q = 5*10^-4cos(10^3πt), С= 10 пФ = 10*10^-12 Ф. 1.Найдите: А) Амплитуду колебаний заряда. В общем виде уравнение колебаний заряда q=qm*cos(ωt). Cопоставляя получаем qm=5*10^-4 Кл. Б) Период. ω= 10^3π. Из ω = 2π/T, T=2π/ω=2π/(10^3π)=2*10^-3 c. В) Частоту. Из υ=1/T, υ=1/(2*10^-3) =0,5*10^3 Гц= 500 Гц. Г) Циклическую частоту. ω= 10^3π Гц= 3140 Гц.
2. Запишите уравнения зависимости напряжения на конденсаторе от времени: Из формулы емкости конденсатора С=q/U имеем u(t) = q(t)/C = (5*10^-4cos(10^3πt))/(10*10^-12) = 0,5*10^8 cos(10^3πt):
и силы тока в контуре от времени: в общем виде i(t) =q(t) '=Imcos(ωt+π/2) - ток опережает колебания напряжения на конденсаторе на π/2, Im=ω*qm; Im=10^3π*5*10^-4=1,57 A. Значит i(t) =1,57cos(10^3πt+π/2).
Монета остывает от температуры t до 0 °С (тающий лед) и отдает льду количество теплоты Q = c*m*(t - 0 °C), где с = 0,22 кДж/(кг*°С) m - масса монеты m = ρ * V, где ρ = 9000 кг/м³ V - объем монеты Для плавления льда необходимо количество теплоты Q = λ * mл, где λ = 330 кДж/кг - удельная теплота плавления льда mл - масса расплавленного льда mл = ρл * V, где ρл = 900 кг/м³ - плотность льда Объем расплавленного льда равен объему монеты, см. условие. Это тепло лед получает от нагретой монеты, т. о. c*m*(t - 0 °C) = λ * mл с*ρ * V*t = λ*ρл * V c*ρ*t = λ*ρл t = λ*ρл / (с*ρ) = 330 кДж/кг * 900 кг/м³ / (9000 кг/м³ * 0,22 кДж/(кг*°С)) = 150 °С
1.Найдите:
А) Амплитуду колебаний заряда.
В общем виде уравнение колебаний заряда q=qm*cos(ωt). Cопоставляя получаем qm=5*10^-4 Кл.
Б) Период. ω= 10^3π. Из ω = 2π/T, T=2π/ω=2π/(10^3π)=2*10^-3 c.
В) Частоту. Из υ=1/T, υ=1/(2*10^-3) =0,5*10^3 Гц= 500 Гц.
Г) Циклическую частоту. ω= 10^3π Гц= 3140 Гц.
2. Запишите уравнения зависимости напряжения на конденсаторе от времени:
Из формулы емкости конденсатора С=q/U имеем
u(t) = q(t)/C =
(5*10^-4cos(10^3πt))/(10*10^-12) = 0,5*10^8 cos(10^3πt):
и силы тока в контуре от времени: в общем виде i(t) =q(t) '=Imcos(ωt+π/2) - ток опережает колебания напряжения на конденсаторе на π/2, Im=ω*qm; Im=10^3π*5*10^-4=1,57 A.
Значит i(t) =1,57cos(10^3πt+π/2).
с = 0,22 кДж/(кг*°С)
m - масса монеты
m = ρ * V, где
ρ = 9000 кг/м³
V - объем монеты
Для плавления льда необходимо количество теплоты Q = λ * mл, где
λ = 330 кДж/кг - удельная теплота плавления льда
mл - масса расплавленного льда
mл = ρл * V, где
ρл = 900 кг/м³ - плотность льда
Объем расплавленного льда равен объему монеты, см. условие.
Это тепло лед получает от нагретой монеты, т. о.
c*m*(t - 0 °C) = λ * mл
с*ρ * V*t = λ*ρл * V
c*ρ*t = λ*ρл
t = λ*ρл / (с*ρ) = 330 кДж/кг * 900 кг/м³ / (9000 кг/м³ * 0,22 кДж/(кг*°С)) = 150 °С