известно что существует кожное дыхание, при котором человеческий организм получает до 5% кислорода. Поясните, за счёт какого физического явления кислород поступает в организм сквозь кожу.
1) Для начала мы сделаем рисунок про массивное тело подвешено на невесомой и нерастяжимой нити, чтобы было понятно. (Рисунок сделан внизу).
2) Для начала мы воспользуемся законом сохранения энергий, про этого закона мы найдем максимальную скорость тела:
E(понт.) = E(кин.) - закон сохранения энергий
E(понт.) = mgh - потенциальная энергия
E(кин.) = (m×(υ(max.))²)/2 - кинетическая энергия
Следовательно мы получаем:
mgh = (m×(υ(max.))²)/2 | : m
gh = (υ(max.))²/2 | × 2
2gh = (υ(max.))² ⇒ υ(max.) = √(2gh) - максимальная скорость тела (1)
3) Теперь мы еще в условий сказано что нить с телом отклонили на 60° от вертикали и отпустили - это значит что получится прямоугольный треугольник, потому что нить с телом отклонили на 60° от вертикали и отпустили его вниз. По рисунку мы видим что получился прямоугольный треугольник, но нам надо найти высоту которую тело отпустили, следовательно мы получим:
Пусть гипотенуза нерастяжимой нити - , тогда маленький катет - .
Теперь мы находим высоту, которую указан на рисунке:
- высота которую тело опустили (2)
3) Теперь мы находим общую формулу про максимальную скорость тела пользуясь из (1) и (2), тогда мы получим:
υ(max.) = √(2gh) и h = l/2, следовательно:
υ(max.) = √(2g × (l/2)) = √(g×l) ⇒ υ(max.) = √(g×l) - максимальная скорость тела
ответ:
высота наклонной плоскости длиной l с углом наклона α равна
н = l*sin(α)
по закону сохранения энергии, потенциальная энергия тела в вершине наклонной плоскости перейдет в кинетическую энергию у основания плоскости
m*g*h = tпост + tвр = m*v² / 2 + j*ω² / 2
момент инерции цилиндра
j = m*r² / 2
при качении без проскальзывания
ω = v / r
поэтому
j*ω² / 2 = m*v² / 4
и
m*g*h = 3*m*v² / 4
v = 2*корень (g*h/3)
момент импульса цилиндра
l = j*ω = (m*r² / 2)*v / r = m*r*v / 2 = m*r*корень (g*h/3)
объяснение:
Дано:
l = 90 см = 0,9 м
α = 60°
------------------------------
Найти:
υ(max.) - ?
1) Для начала мы сделаем рисунок про массивное тело подвешено на невесомой и нерастяжимой нити, чтобы было понятно. (Рисунок сделан внизу).
2) Для начала мы воспользуемся законом сохранения энергий, про этого закона мы найдем максимальную скорость тела:
E(понт.) = E(кин.) - закон сохранения энергий
E(понт.) = mgh - потенциальная энергия
E(кин.) = (m×(υ(max.))²)/2 - кинетическая энергия
Следовательно мы получаем:
mgh = (m×(υ(max.))²)/2 | : m
gh = (υ(max.))²/2 | × 2
2gh = (υ(max.))² ⇒ υ(max.) = √(2gh) - максимальная скорость тела (1)
3) Теперь мы еще в условий сказано что нить с телом отклонили на 60° от вертикали и отпустили - это значит что получится прямоугольный треугольник, потому что нить с телом отклонили на 60° от вертикали и отпустили его вниз. По рисунку мы видим что получился прямоугольный треугольник, но нам надо найти высоту которую тело отпустили, следовательно мы получим:
Пусть гипотенуза нерастяжимой нити - , тогда маленький катет - .
Теперь мы находим высоту, которую указан на рисунке:
- высота которую тело опустили (2)
3) Теперь мы находим общую формулу про максимальную скорость тела пользуясь из (1) и (2), тогда мы получим:
υ(max.) = √(2gh) и h = l/2, следовательно:
υ(max.) = √(2g × (l/2)) = √(g×l) ⇒ υ(max.) = √(g×l) - максимальная скорость тела
υ(max.) = √(9,8 м/с² × 0,9 м) = √(8,82 м²/с²) ≈ 2,97 м/с
ответ: υ(max.) = 2,97 м/с