Решение: в отличие от предыдущий задачи, автомобиль движется первую половину времени с одной скоростью 40 км/ч, а вторую половину времени — со скоростью 60 км/ч. Следовательно, автомобиль проходит за равные промежутки времени разные расстояния. S1 = v1 t 2 и S2 = v2 t , 2 тогда средняя скорость V = S1 + S2 = v1t/2 + v2t/2 = v1 + v2 . t t 2 Средняя скорость для этого случая оказалась равной среднему арифметическому значению скоростей. Подставим значения скоростей и проведем вычисления: V = 40 + 60 = 50 км/ч. 2 Средняя скорость равна 50 км/ч.
Для начала приведем скорости к системе СИ V=54 км/ч=54000 м/3600c=15м/с U=72 км/ч=72000 м/3600c=20м/с
квадрат расстояния между автомобилями вычисляем по формуле Пифагора d²=(L-Vt)²+(L-Ut)² найдем производную от d² (d²)'=2(L-Vt)(-V)+2(L-Ut)(-U) минимальное d² (и соответственно минимальное d) будет в момент времени t, когда (d²)'=0 2(L-Vt)(-V)+2(L-Ut)(-U)=0 V(L-Vt)+U(L-Ut)=0 VL-V²t+UL-U²t=0 L(V+U)=t(V²+U²)
S1 = v1 t
2
и
S2 = v2 t ,
2
тогда средняя скорость
V = S1 + S2 = v1t/2 + v2t/2 = v1 + v2 .
t t 2
Средняя скорость для этого случая оказалась равной среднему арифметическому значению скоростей.
Подставим значения скоростей и проведем вычисления:
V = 40 + 60 = 50 км/ч.
2
Средняя скорость равна 50 км/ч.
V=54 км/ч=54000 м/3600c=15м/с
U=72 км/ч=72000 м/3600c=20м/с
квадрат расстояния между автомобилями вычисляем по формуле Пифагора
d²=(L-Vt)²+(L-Ut)²
найдем производную от d²
(d²)'=2(L-Vt)(-V)+2(L-Ut)(-U)
минимальное d² (и соответственно минимальное d) будет в момент времени t, когда (d²)'=0
2(L-Vt)(-V)+2(L-Ut)(-U)=0
V(L-Vt)+U(L-Ut)=0
VL-V²t+UL-U²t=0
L(V+U)=t(V²+U²)
t=450м *(15 м/c+20 м/c)/(15² м²/с²+20² м²/с²)=450 м/(225+400)м/с=25,2с
подставляем это значение t в формулу для d²
d²=(450м-15м/с * 25,2с)²+(450м-20м/с * 25,2с)²=8100 м²
d=90,0м