К дощечке прибиты два одинаковых листа белой жести.Внутреняя поверхность одного их них покрыта копотью,а другая оставлена блестящей.К наружней поверхности листов приклеены воском спички.Между листами помещают раскаленый металлический шарик .одновременно отпадут спички? а) одновременно
б) от закопчённой поверхности спички отпадут раньше
в) от блестящей поверхности спички отпадут раньше
Наложим на систему декартовы координаты, совместив их начало с пушкой и рассмотрим снаряд как материальную точку, участвующую одновременно в двух движениях - по оси х и оси y.
Тогда в некий момент времени t можно записать следующие уравнения для скорости точки:
Уравнение перемещения точки по осям будет иметь вид
В любой точке М квадрат расстояния r² от начала координат до этой точки может быть найден по теореме Пифагора. Мы ищем квадрат, чтобы не заморачиваться извлечением квадратного корня, поскольку сама величина r нам не нужна.
Чтобы определить области убывания функции L(t), нужно найти значения t при которых производная L'(t) будет отрицательной.
Упростим L(t), раскрыв скобки и используя основное тригонометрическое тождество, а затем найдем производную.
Осталось решить неравенство
Сначала определим точки, где левая часть обращается в ноль, а потом найдем необходимые интервалы. Получается квадратное уравнение относительно t; его решение тривиально и приводить я его не буду.
Получаем два корня,которые можно записать одним выражением:
Отсюда мы получаем область допустимых значений sin(α) ∈ [2√2/3;1] - значение 1 берем из условия, что углы больше 90° не рассматриваются.
С некоторым приближением можно записать α ∈ [70.53°;90°]
Первый (меньший) корень задает нам точку, начиная с которой расстояние между пушкой и снарядом начинает сокращаться.
Второй (больший) корень задает точку, после прохождения которой расстояние снова начинает увеличиваться.
Но для t₂ необходимо учесть, что наши формулы рассматривают процесс движения тела до бесконечности, а в реальности снаряд может падать ниже уровня пушки лишь разве что в овраг... Поэтому достаточно ограничиться временем движения снаряда при достижении им горизонта пушки, т.е. у=0 в нашей системе координат.
Для этого находим решение уравнения у=0
Тривиальное решение t₁=0 нас не интересует, а вот t₂ - то, что нужно.
Окончательно получаем решение
Если интересует длительность промежутка времени, в который приближение происходит, она равна
Если минимум равен t₂, получаем решение
есть две шайбы массами М и m скорость одной V другой v
центр масс системы движется со скоростью (M*V+m*v)/(M+m)
тело m относительно центра масс двигалось со скоростью v - (M*V+m*v)/(M+m) до столкновения и со скоростью -v + (M*V+m*v)/(M+m) после упругого столкновения. скорость после упругого столкновения тела m относительно исходной системы отсчета равна u = -v + 2(M*V+m*v)/(M+m)
подставим значения масс и известных скоростей
u = -v + 2(M*V+m*v)/(M+m)= -v + 2(M*0+0,1*v)/(0,2+0,1)=v*(-1 + 2/3)=-v/3
модуль скорости тела после удара в 3 раза меньше модуля исходной скорости. значит кинетическая энергия (пропорциональная квадрату скорости) после удара уменьшилась в 9 раз