Жодне тіло не рухається весь час із постійною швидкістю. Починаючи рух, автомобіль рухається швидше і швидше. Деякий час він може рухатися рівномірно, але потім він гальмує і зупиняється. При цьому автомобіль проходить різні відстані за один і той же час.
Рух, при якому тіло за рівні проміжки часу проходить неоднакові відрізки шляху, називається нерівномірним. При такому русі величина швидкості не залишається незмінною. У такому випадку можна говорити лише про середню швидкість.
Середня швидкість показує, чому дорівнює відстань, яку тіло проходить за одиницю часу. Вона дорівнює відношенню відрізку шляху тіла до часу руху. Середня швидкість, як і швидкість тіла при рівномірному русі, вимірюється в метрах, поділених на секунду. Для того щоб знайти середню швидкість руху тіла, необхідно певну відстань поділити на час руху тіла.
*** [ограничивают 5000 символов, продолжение решения]
Аналогично напряжённости электрического поля – разумно ввести и понятие напряжённости магнитного воздействия, создаваемого одним зарядом. В случае электрического взаимодействия мы вводим понятие, которое оказывается независимым от пробного заряда, а именно – удельную силу, действующую на заряд, поскольку сама сила воздействия пропорциональная пробному заряду. Точно так же, нужно просто ввести характеристику, которая не будет включать в себя параметры пробного движущегося заряда, а именно силу, удельную к элементу тока. Элементом тока называют величину [vq]. Нечто аналогичное импульсу, но связанное с электричеством.
В этом случае окажется, что, напряжённость магнитного поля:
Ho = |F/[vq]| = k/c² [VQ]/R² .
В определениях индукции магнитного поля в среде и напряжённости магнитного поля в вакууме имеются известные неудобства, вдаваться в которые здесь неуместно, но, которые, по сути, не меняют природы указанных понятий.
В вакууме индукция B магнитного поля по определению равна напряжённости Ho магнитного поля:
B = Ho = k/c² [VQ]/R² = μo/ [VQ]/R² , (положить k/c² = μo/[4π] – оказывается удобным в большом классе задач)
Кроме прочего, в силу обстоятельств, при которых появляется необходимость введения магнитного поля, довольно замысловатым оказывается и геометрическая интерпретация напряжённости магнитного поля, вводимого, как псевдовектор c непараллельным силам магнитного взаимодействия направлением.
Но, как бы то ни было, поскольку мы понимаем, что подвижный заряд, оказавшийся на указанной в условии прямой будет либо притягиваться к каждому из протонов, либо отталкиваться от них, то поэтому для нахождения модуля суперпозиции магнитных полей – достаточно найти модуль суперпозиции магнитных сил, которые направлены просто к протонам или от них.
Итак:
Модули индукции магнитных полей каждого протона в точках на указанной прямой – будут выражаться, как:
Bp = k/c² [Ve] / [ (a/2)² + y² ] , где y – высота подъёма над плоскостью траекторий протонов.
Результирующая сила, действующая на пробный подвижный заряд, оказывающийся на заданной прямой – будет направлена перпендикулярно плоскости траекторий протонов, а значит, сила чисто магнитного взаимодействия будет складываться из двух вертикальных составляющих. В таком случае, магнитное поле системы протонов, окажется равно:
B = 2 Bp y / √[ (a/2)² + y² ] ;
B = 2k/c² [Ve] y / √( (a/2)² + y² )³ ;
Ясно, что посередине прямой, соединяющей протоны – магнитная индукция равна нулю. Так же, ясно, что и на бесконечности – она равна нулю. А где-то между нолём по высоте и бесконечностью – магнитная индукция принимает один максимум, что можно показать, просто взяв производную dB/dy и приравняв её к нулю:
При этом, магнитная индукция будет направлена перпендикулярно вертикальной оси и одновременно перпендикулярно направлению движения протонов. Т.е., короче говоря, магнитная индукция в искомой точке будет сориентирована вдоль прямой, соединяющей протоны. А направлена она будет, если смотреть в сторону улетающих от нас протонов – вправо в верхней над протонами точке и влево в нижней под протонами точке, т.е., короче говоря, магнитная индукция при таком взгляде будет находиться на контуре силовых линий магнитной индукции, с направлением обхода – по часовой стрелке.
Нерівномірний рух. Середня швидкість
Жодне тіло не рухається весь час із постійною швидкістю. Починаючи рух, автомобіль рухається швидше і швидше. Деякий час він може рухатися рівномірно, але потім він гальмує і зупиняється. При цьому автомобіль проходить різні відстані за один і той же час.
Рух, при якому тіло за рівні проміжки часу проходить неоднакові відрізки шляху, називається нерівномірним. При такому русі величина швидкості не залишається незмінною. У такому випадку можна говорити лише про середню швидкість.
Середня швидкість показує, чому дорівнює відстань, яку тіло проходить за одиницю часу. Вона дорівнює відношенню відрізку шляху тіла до часу руху. Середня швидкість, як і швидкість тіла при рівномірному русі, вимірюється в метрах, поділених на секунду. Для того щоб знайти середню швидкість руху тіла, необхідно певну відстань поділити на час руху тіла.
Аналогично напряжённости электрического поля – разумно ввести и понятие напряжённости магнитного воздействия, создаваемого одним зарядом. В случае электрического взаимодействия мы вводим понятие, которое оказывается независимым от пробного заряда, а именно – удельную силу, действующую на заряд, поскольку сама сила воздействия пропорциональная пробному заряду. Точно так же, нужно просто ввести характеристику, которая не будет включать в себя параметры пробного движущегося заряда, а именно силу, удельную к элементу тока. Элементом тока называют величину [vq]. Нечто аналогичное импульсу, но связанное с электричеством.
В этом случае окажется, что, напряжённость магнитного поля:
Ho = |F/[vq]| = k/c² [VQ]/R² .
В определениях индукции магнитного поля в среде и напряжённости магнитного поля в вакууме имеются известные неудобства, вдаваться в которые здесь неуместно, но, которые, по сути, не меняют природы указанных понятий.
В вакууме индукция B магнитного поля по определению равна напряжённости Ho магнитного поля:
B = Ho = k/c² [VQ]/R² = μo/ [VQ]/R² , (положить k/c² = μo/[4π] – оказывается удобным в большом классе задач)
где: k/c² = μo/[4π] = 9 000 000 000 / 300 000 000 ² = 1/10 000 000 [Н/А²]
Кроме прочего, в силу обстоятельств, при которых появляется необходимость введения магнитного поля, довольно замысловатым оказывается и геометрическая интерпретация напряжённости магнитного поля, вводимого, как псевдовектор c непараллельным силам магнитного взаимодействия направлением.
Но, как бы то ни было, поскольку мы понимаем, что подвижный заряд, оказавшийся на указанной в условии прямой будет либо притягиваться к каждому из протонов, либо отталкиваться от них, то поэтому для нахождения модуля суперпозиции магнитных полей – достаточно найти модуль суперпозиции магнитных сил, которые направлены просто к протонам или от них.
Итак:
Модули индукции магнитных полей каждого протона в точках на указанной прямой – будут выражаться, как:
Bp = k/c² [Ve] / [ (a/2)² + y² ] , где y – высота подъёма над плоскостью траекторий протонов.
Результирующая сила, действующая на пробный подвижный заряд, оказывающийся на заданной прямой – будет направлена перпендикулярно плоскости траекторий протонов, а значит, сила чисто магнитного взаимодействия будет складываться из двух вертикальных составляющих. В таком случае, магнитное поле системы протонов, окажется равно:
B = 2 Bp y / √[ (a/2)² + y² ] ;
B = 2k/c² [Ve] y / √( (a/2)² + y² )³ ;
Ясно, что посередине прямой, соединяющей протоны – магнитная индукция равна нулю. Так же, ясно, что и на бесконечности – она равна нулю. А где-то между нолём по высоте и бесконечностью – магнитная индукция принимает один максимум, что можно показать, просто взяв производную dB/dy и приравняв её к нулю:
dB/dy = 2k/c² [Ve] [ (a/2)² – 2y² ] / √( (a/2)² + y² )^5 = 0 ;
y(max) = a/[2√2] – это и есть высота максимума магнитной индукции, найдём её.
Bmax = 2k/c² [Ve] a/[2√2] / √( (a/2)² + a²/8 )³ = 16/[3√3] k/c² [Ve]/a² ;
Bmax = 16/[3√3] k/c² [Ve]/a² ≈
≈ 16 / [ 30 000 000 √3 ] [ 2 000 000 * 1.6022 * 10^(–19) ] / 0.2² ≈
≈ 128.176/[3√3] [ 10^(–19) ] ≈ 2.467*10^(–18) Тл ≈ 0.000 002 467 пТл ;
ответ: Bmax ≈ 0.002 467 фТл ≈ 2.467 аТл ; ( фемтотеслы / аттотеслы ) ;
Или иначе: Bmax ≈ 2.467 мкН/[ГКл*км/с] ;
При этом, магнитная индукция будет направлена перпендикулярно вертикальной оси и одновременно перпендикулярно направлению движения протонов. Т.е., короче говоря, магнитная индукция в искомой точке будет сориентирована вдоль прямой, соединяющей протоны. А направлена она будет, если смотреть в сторону улетающих от нас протонов – вправо в верхней над протонами точке и влево в нижней под протонами точке, т.е., короче говоря, магнитная индукция при таком взгляде будет находиться на контуре силовых линий магнитной индукции, с направлением обхода – по часовой стрелке.