Монета остывает от температуры t до 0 °С (тающий лед) и отдает льду количество теплоты Q = c*m*(t - 0 °C), где с = 0,22 кДж/(кг*°С) m - масса монеты m = ρ * V, где ρ = 9000 кг/м³ V - объем монеты Для плавления льда необходимо количество теплоты Q = λ * mл, где λ = 330 кДж/кг - удельная теплота плавления льда mл - масса расплавленного льда mл = ρл * V, где ρл = 900 кг/м³ - плотность льда Объем расплавленного льда равен объему монеты, см. условие. Это тепло лед получает от нагретой монеты, т. о. c*m*(t - 0 °C) = λ * mл с*ρ * V*t = λ*ρл * V c*ρ*t = λ*ρл t = λ*ρл / (с*ρ) = 330 кДж/кг * 900 кг/м³ / (9000 кг/м³ * 0,22 кДж/(кг*°С)) = 150 °С
Для начала переведем неудобные 54 км/ч в приятные 15 м/с. Затем, предположив, что "проезжает через туннель" - это промежуток между "первый вагон въехал в туннель" и "последний вагон выехал из туннеля", посчитаем на это основании длину поезда. Примем длину туннеля за м, длину поезда l, скорость нашего поезда м/с, скорость второго поезда , время проезда через туннель сек, а скорость проезда мимо поезда сек. Тогда , оттуда м. Теперь второй случай, поезд мимо поезда , м/с. Второй поезд ехал со скорость 10 метров в секунду.
с = 0,22 кДж/(кг*°С)
m - масса монеты
m = ρ * V, где
ρ = 9000 кг/м³
V - объем монеты
Для плавления льда необходимо количество теплоты Q = λ * mл, где
λ = 330 кДж/кг - удельная теплота плавления льда
mл - масса расплавленного льда
mл = ρл * V, где
ρл = 900 кг/м³ - плотность льда
Объем расплавленного льда равен объему монеты, см. условие.
Это тепло лед получает от нагретой монеты, т. о.
c*m*(t - 0 °C) = λ * mл
с*ρ * V*t = λ*ρл * V
c*ρ*t = λ*ρл
t = λ*ρл / (с*ρ) = 330 кДж/кг * 900 кг/м³ / (9000 кг/м³ * 0,22 кДж/(кг*°С)) = 150 °С