Двигаясь по круговой орбите радиуса r, на спутник действует сила земного тяготения gmM/r2, где g - постоянная тяготения, m - масса спутника и M - масса планеты (Земли в нашем случае). Согласно второму закону Ньютона сила тяготения равна центростремительной силе mv2/r. Отсюда получаем выражение для скорости движения спутника по круговой орбите: v=(g M/r)1/2 Период обращения спутника вокруг Земли Tсп равен длине орбиты 2pr, делённой на скорость движения спутника v: Tсп=2pr/v=2p (r3/gM)1/2 Если этот орбитальный период Tсп равен периоду вращения Земли вокруг собственной оси (примерно 24 часа), то спутник будет "висеть" над одним и тем же районом Земли, а такая орбита называется геостационарной. Геостационарная орбита лежит в плоскости экватора Земли. Её радиус составляет 42164 км, что примерно в 6 раз больше радиуса Земли. Небесные координаты спутника на геостационарной орбите остаются постоянными и мы можем легко направить на него параболическую антенну (например, для приема спутникового телевидения). Зная период вращения (24 часа) и радиус Земли легко вычислить линейную скорость вращения на экваторе: v0 = w R, где w = 2p/86400 об/сек, и при R = 6378 км получается v0 ~ 460 м/c Радиус Земли R = 6400 км, масса Земли М = 6 • 1024 кг.
Магни́тное по́ле — поле, действующее на движущиеся электрические заряды и на тела, обладающие магнитным моментом, независимо от состояния их движения[1]; магнитная составляющая электромагнитного поля[2].
Магнитное поле может создаваться током заряженных частиц и/или магнитными моментами электронов в атомах (и магнитными моментами других частиц, что обычно проявляется в существенно меньшей степени) (постоянные магниты).
Кроме этого, оно возникает в результате изменения во времени электрического поля.
Основной количественной характеристикой магнитного поля является вектор магнитной индукции B(вектор индукции магнитного поля)[3]. С математической точки зрения магнитное поле описывается векторным полем {B} = {B} (x,y,z)}, заданным в каждой точке пространства.
Вместо магнитной индукции для описания магнитного поля можно использовать ещё одну фундаментальную величину, тесно с ней взаимосвязанную, — векторный потенциал.
Нередко в литературе в качестве основной характеристики магнитного поля в вакууме (то есть в отсутствие вещества) выбирают не вектор магнитной индукции {B} ,} а вектор напряжённости магнитного поля {H}, что формально можно сделать, так как в вакууме эти два вектора совпадают[4]; однако в магнитной среде вектор {H} не несёт уже того же физического смысла[5], являясь важной, но всё же вс величиной. Поэтому, несмотря на формальную эквивалентность обоих подходов для вакуума, с систематической точки зрения следует считать основной характеристикой магнитного поля именно В.
Магнитное поле можно назвать особым видом материи[6], посредством которой осуществляется взаимодействие между движущимися заряженными частицами или телами, обладающими магнитным моментом.
В специальной теории относительности магнитные поля являются необходимым следствием существования электрических полей.
Вместе магнитное и электрическое поля образуют электромагнитное поле, проявлениями которого являются, в частности, свет и все другие электромагнитные волны.
С точки зрения квантовой теории поля магнитное взаимодействие — как частный случай электромагнитного взаимодействия — переносится фундаментальным безмассовым бозоном — фотоном (частицей, которую можно представить как квантовое возбуждение электромагнитного поля), часто (например, во всех случаях статических полей) — виртуальным.
Двигаясь по круговой орбите радиуса r, на спутник действует сила земного тяготения gmM/r2, где g - постоянная тяготения, m - масса спутника и M - масса планеты (Земли в нашем случае). Согласно второму закону Ньютона сила тяготения равна центростремительной силе mv2/r. Отсюда получаем выражение для скорости движения спутника по круговой орбите:
v=(g M/r)1/2
Период обращения спутника вокруг Земли Tсп равен длине орбиты 2pr, делённой на скорость движения спутника v:
Tсп=2pr/v=2p (r3/gM)1/2
Если этот орбитальный период Tсп равен периоду вращения Земли вокруг собственной оси (примерно 24 часа), то спутник будет "висеть" над одним и тем же районом Земли, а такая орбита называется геостационарной. Геостационарная орбита лежит в плоскости экватора Земли. Её радиус составляет 42164 км, что примерно в 6 раз больше радиуса Земли. Небесные координаты спутника на геостационарной орбите остаются постоянными и мы можем легко направить на него параболическую антенну (например, для приема спутникового телевидения).
Зная период вращения (24 часа) и радиус Земли легко вычислить линейную скорость вращения на экваторе: v0 = w R, где w = 2p/86400 об/сек, и при R = 6378 км получается v0 ~ 460 м/c
Радиус Земли R = 6400 км, масса Земли М = 6 • 1024 кг.
Магни́тное по́ле — поле, действующее на движущиеся электрические заряды и на тела, обладающие магнитным моментом, независимо от состояния их движения[1]; магнитная составляющая электромагнитного поля[2].
Магнитное поле может создаваться током заряженных частиц и/или магнитными моментами электронов в атомах (и магнитными моментами других частиц, что обычно проявляется в существенно меньшей степени) (постоянные магниты).
Кроме этого, оно возникает в результате изменения во времени электрического поля.
Основной количественной характеристикой магнитного поля является вектор магнитной индукции B(вектор индукции магнитного поля)[3]. С математической точки зрения магнитное поле описывается векторным полем {B} = {B} (x,y,z)}, заданным в каждой точке пространства.
Вместо магнитной индукции для описания магнитного поля можно использовать ещё одну фундаментальную величину, тесно с ней взаимосвязанную, — векторный потенциал.
Нередко в литературе в качестве основной характеристики магнитного поля в вакууме (то есть в отсутствие вещества) выбирают не вектор магнитной индукции {B} ,} а вектор напряжённости магнитного поля {H}, что формально можно сделать, так как в вакууме эти два вектора совпадают[4]; однако в магнитной среде вектор {H} не несёт уже того же физического смысла[5], являясь важной, но всё же вс величиной. Поэтому, несмотря на формальную эквивалентность обоих подходов для вакуума, с систематической точки зрения следует считать основной характеристикой магнитного поля именно В.
Магнитное поле можно назвать особым видом материи[6], посредством которой осуществляется взаимодействие между движущимися заряженными частицами или телами, обладающими магнитным моментом.
В специальной теории относительности магнитные поля являются необходимым следствием существования электрических полей.
Вместе магнитное и электрическое поля образуют электромагнитное поле, проявлениями которого являются, в частности, свет и все другие электромагнитные волны.
С точки зрения квантовой теории поля магнитное взаимодействие — как частный случай электромагнитного взаимодействия — переносится фундаментальным безмассовым бозоном — фотоном (частицей, которую можно представить как квантовое возбуждение электромагнитного поля), часто (например, во всех случаях статических полей) — виртуальным.
Объяснение:
НА ЦИФРЫ ВНИМАНИЕ НЕ ОБРАЩАЙ.