А) Если конденсатор сначала заряжают, а затем отключают от источника напряжения, то неизменным остается заряд q на обкладках, а при увеличении втрое расстояния изменяется емкость С и напряжение U на нем. Соответственно энергия W=q^2/2C. Так как емкость С=eS/d, C1=eS/d, C2=eS/3d =C1/3, то W2=3W1. б) Если конденсатор остается подключенным, то у такого конденсатора изменяется вследствие увеличении расстояния его емкость С2=C1/3 и заряд на обкладках q=C*U. U естественно остается тем же, а q2=C2*U=C1*U/3. W2=q2^2/2C2=3(C1*U)^2/9*2*C1=(C1*U)^2/6*C1=C*U^2/6=W1/3, W1=C*U^2/2.
б) Если конденсатор остается подключенным, то у такого конденсатора изменяется вследствие увеличении расстояния его емкость С2=C1/3 и заряд на обкладках q=C*U. U естественно остается тем же, а q2=C2*U=C1*U/3.
W2=q2^2/2C2=3(C1*U)^2/9*2*C1=(C1*U)^2/6*C1=C*U^2/6=W1/3, W1=C*U^2/2.
первая площадь круга будет равна
s1 кр=π*r^2
первая площадь квадрата равна при d-диагональ квадрата
и d=2r
s1 кв=d^2/2=2r^2
вторая площадь круга
радиус второго круга будет равен r*√2/2, а его площадь:
s2 кр=1/2π*r^2
для квадрата
s2 кв=r^2
и так далее
сумма площадей всех кругов:
sn кругов=π*r^2+π*r^2/2+π*r^2/4+π*r^2/8++
+π*r^2/n=π*r^2(1+1/2+1/4+1/8++1/n)
сумма площадей всех квадратов
sn квадратов=2r^2+r^2+2r^2/2+2r^2/4+2r^2/8++
+2r^2/n=r^2(2+1+1/2+1/4+1/8++1/n)
известно, что предел суммы ряда (1/2+1/4+1/8++1/n) при n ⇒∞ равен 1, тогда предел общей суммы кругов:
lims кр=π*r^2(1+1/2+1/4+1/8++1/n)=π*r^2(1+1)=2π*r^2
и для квадратов:
limsкв=r^2(2+1+1/2+1/4+1/8++1/n)=r^2(3+1)=4r^2
по-моему так.