Какие утверждения справедливы А.средняя скорость тела при неравномерном движении это величина , равная отношению пути ко времени , за которое этот путь пройден Б. средняя скорость тела при неравномерном движении это величина , равная отношению всего пути, пройденного телом , на всё время движерия Варианты ответов: только А только Б А и Б ни А ни Б
В средние века не было ясного представления о работе и измерении ее. Зато отношение между выигрышем в силе и потерей в скорости было известно. На него и указывали вдумчивые инженеры и исследователи. Знаменитый основатель механики Галилео Галилей также не мимо загадки выигрыша в силе. Еще в юности он написал небольшое сочинение о простых машинах. В нем он убедительно доказывал, что рычаг, подвижный блок и вообще машины, выигрывая в силе, теряют в скорости, то есть не дают выигрыша в работе. Но рядовые техники средневековья еще предавались бесплодным размышлениям о причине выигрыша в силе. Подобно древним, они были уверены, что, пользуясь машинами, им удается «обмануть природу» . Это заблуждение толкнуло изобретателей на ложный путь, когда перед ними возникла задача отыскать удобный и дешевый двигатель.
Если равноплечие весы будут находиться в равновесии, значит на левую и правую чаши весов действуют одинаковые по величине силы, то есть верно следующее равенство (смотрите схему): mg — {f_{а1}} = mg — {f_{а2}} распишем силы архимеда f_{а1} и f_{а2} в левой и правой части равенства по известной формуле: mg — {\rho _в}g{v_1} = mg — {\rho _в}g{v_2} m — {\rho _в}{v_1} = m — {\rho _в}{v_2} неизвестный объем v_2 можно выразить из массы m и плотности \rho по формуле: {v_2} = \frac{m}{\rho } m — {\rho _в}{v_1} = m — {\rho _в}\frac{m}{\rho } m — {\rho _в}{v_1} = \frac{{m\left( {\rho — {\rho _в}} \right)}}{\rho } выразим неизвестную массу гирь m: m = \frac{{\rho \left( {m — {\rho _в}{v_1}} \right)}}{{\rho — {\rho _в}}} переведем плотности и объем тела в систему си: 1\; г/см^3 = 1000\; кг/м^3 7\; г/см^3 = 7000\; кг/м^3 100\; см^3 = {10^{ — 4}}\; м^3 посчитаем численный ответ к : m = \frac{{7000 \cdot \left( {1 — 1000 \cdot {{10}^{ — 4}}} \right)}}{{7000 — 1000}} = 1,05\; кг ответ 1,05кг
Знаменитый основатель механики Галилео Галилей также не мимо загадки выигрыша в силе. Еще в юности он написал небольшое сочинение о простых машинах. В нем он убедительно доказывал, что рычаг, подвижный блок и вообще машины, выигрывая в силе, теряют в скорости, то есть не дают выигрыша в работе.
Но рядовые техники средневековья еще предавались бесплодным размышлениям о причине выигрыша в силе. Подобно древним, они были уверены, что, пользуясь машинами, им удается «обмануть природу» . Это заблуждение толкнуло изобретателей на ложный путь, когда перед ними возникла задача отыскать удобный и дешевый двигатель.