Взять любые два ближайших деления обозначенные цифрами.
Например: 30 мл и 40 мл.
2. Найти разность этих чисел.
40 мл – 30 мл = 10 мл
Рисунок шкалы мензурки
3. Разделить полученное число на количество маленьких, необозначенных цифрами, делений между ними. Вспомним, что количество делений равно количеству промежутков между штрихами (а не количеству штрихов).
(40 мл – 30 мл) : 5 = 10 мл : 5 = 2 мл
4. Полученное число и будет ценой деления шкалы мензурки, показывающей, сколько миллилитров соответствует одному маленькому делению.
Цена деления шкалы мензурки: 2 мл.
5. Погрешность прибора равна половине цены деления.
Погрешность мензурки: 1 мл.
6.Запишем результат измерения.
Объём жидкости в мензурке V = 50 мл + 3 · 2 мл = 56 мл
С учётом погрешности V = 56 мл + 1 мл
(50 мл уже есть под уровнем жидкости, 3 деления по 2 мл, и плюс погрешность измерения).
Геоме́трия (от др.-греч. γεωμετρία, от γῆ — земля и μετρέω — измеряю) — раздел математики, изучающий пространственные структуры и отношения, а также их обобщения[1].
Геометрия как систематическая наука появилась в Древней Греции, её аксиоматические построения описаны в «Началах» Евклида. Евклидова геометрия занималась изучением простейших фигур на плоскости и в пространстве, вычислением их площади и объёма. Предложенный Декартом в 1637 году координатный метод лёг в основу аналитической и дифференциальной геометрии, а задачи, связанные с черчением, привели к созданию начертательной и проективной геометрии. При этом все построения оставались в рамках аксиоматического подхода Евклида. Коренные изменения связаны с работами Лобачевского в 1829 году, который отказался от аксиомы параллельности и создал новую неевклидову геометрию, определив таким образом путь дальнейшего развития науки и создания новых теорий.
Классификация геометрии, предложенная Клейном в «Эрлангенской программе» в 1872 году и содержащая в своей основе инвариантность геометрических объектов относительно различных групп преобразований, сохраняется до сих пор.
40 мл – 30 мл = 10 мл
(40 мл – 30 мл) : 5 = 10 мл : 5 = 2 мл
Объяснение:
Взять любые два ближайших деления обозначенные цифрами.
Например: 30 мл и 40 мл.
2. Найти разность этих чисел.
40 мл – 30 мл = 10 мл
Рисунок шкалы мензурки
3. Разделить полученное число на количество маленьких, необозначенных цифрами, делений между ними. Вспомним, что количество делений равно количеству промежутков между штрихами (а не количеству штрихов).
(40 мл – 30 мл) : 5 = 10 мл : 5 = 2 мл
4. Полученное число и будет ценой деления шкалы мензурки, показывающей, сколько миллилитров соответствует одному маленькому делению.
Цена деления шкалы мензурки: 2 мл.
5. Погрешность прибора равна половине цены деления.
Погрешность мензурки: 1 мл.
6.Запишем результат измерения.
Объём жидкости в мензурке V = 50 мл + 3 · 2 мл = 56 мл
С учётом погрешности V = 56 мл + 1 мл
(50 мл уже есть под уровнем жидкости, 3 деления по 2 мл, и плюс погрешность измерения).
Геоме́трия (от др.-греч. γεωμετρία, от γῆ — земля и μετρέω — измеряю) — раздел математики, изучающий пространственные структуры и отношения, а также их обобщения[1].
Геометрия как систематическая наука появилась в Древней Греции, её аксиоматические построения описаны в «Началах» Евклида. Евклидова геометрия занималась изучением простейших фигур на плоскости и в пространстве, вычислением их площади и объёма. Предложенный Декартом в 1637 году координатный метод лёг в основу аналитической и дифференциальной геометрии, а задачи, связанные с черчением, привели к созданию начертательной и проективной геометрии. При этом все построения оставались в рамках аксиоматического подхода Евклида. Коренные изменения связаны с работами Лобачевского в 1829 году, который отказался от аксиомы параллельности и создал новую неевклидову геометрию, определив таким образом путь дальнейшего развития науки и создания новых теорий.
Классификация геометрии, предложенная Клейном в «Эрлангенской программе» в 1872 году и содержащая в своей основе инвариантность геометрических объектов относительно различных групп преобразований, сохраняется до сих пор.
Объяснение: