Какое описание взаимного расположения и движения частиц вещества соответствует твёрдому агрегатному состоянию?
a) Частицы вещества плотно скомпонованы, но не выстроены в чётком порядке. Частицы вещества колеблются вокруг своих положений равновесия и переходят из одного положения в другое.
b) Частицы вещества плотно скомпонованы и выстроены в чётком порядке, который на больших (по сравнению с размером частицы) расстояниях. Частицы колеблются вокруг своих положений равновесия, но практически не переходят из одного положения в другое
c) Частицы вещества плотно скомпонованы и выстроены в чётком порядке, который на больших (по сравнению с размером частицы) расстояниях. Частицы полностью неподвижны.
d) Частицы вещества расположены хаотически и мало взаимодействуют друг с другом. Частицы свободно перемещаются относительно друг друга
Объяснение:
Дано:
m1 = 0,2 кг
m2 = 0,3 кг
ал = 1,2 м/с2
g = 10 м/с2

По условию задачи нить невесома и нерастяжима. Массой блока пренебрегаем. Тогда
 и .
Расставим силы, действующие на грузы, и запишем для каждого тела свое уравнение динамики. В скалярной форме (с учетом, что Т1 = Т2 = Т):
Т – m1g = m1(a + a л); (1)
Р = ?
Т – m2g = m2(aл – а). (2)
; Fупр = 2Т.
Решаем систему уравнений относительно силы натяжения Т:
 Þ . (3)
 Þ . (4)
Выразим из уравнений (3) и (4) ускорение а и приравняем их друг другу:
,
,

 Þ
.
Тогда показания динамометра:
 (Н).
ответ: Р = 5,4 Н
α ≈ 2°, T ≈ 4,9 мН
Объяснение:
Дано:
σ = 30 мкКл/м² = 3·10⁻⁵ Кл/м²
m = 0,5 г = 5·10⁻⁴ кг
q = 0,1 нКл = 10⁻¹⁰ Кл
g = 9,8 м/с²
ε₀ = 8,85·10⁻¹² Ф/м
Найти: T, α.
Напряжённость электрического поля бесконечной плоскости:
E = σ/(2ε₀).
Сила электростатического отталкивания между плоскостью и шариком:
F = q·E = q·σ/(2ε₀) = qσ/(2ε₀)
Согласно второму закону Ньютона:
х: F - T·sin α = 0
y: T·cos α - mg = 0
T·sin α = F (1)
T·cos α = mg (2)
Найдём угол α. Для этого поделим (1) на (2): tg α = F/mg.
α = arc tg F/mg = arc tg (qσ/(2ε₀))/mg = arc tg qσ/(2ε₀mg) =
arc tg 10⁻¹⁰·3·10⁻⁵/(2·8,85·10⁻¹²·5·10⁻⁴·9,8) = arc tg 10⁻¹⁰·3·10⁻⁵/(2·8,85·10⁻¹²·5·10⁻⁴·9,8) = arc tg 3/(8,85·9,8) ≈ 2°
Найдём силу натяжения нити T из (2): T = mg/cos α =
5·10⁻⁴·9,8/cos 2° ≈ 4,9·10⁻³ Н = 4,9 мН.