R₁ = 259.8 H; R₂ = 150 H
Объяснение:
Будем считать, угол между левой и правой опорными плоскостями равен 90°.
G = 300H
R₁ - ? - реакция правой опорной плоскости (направлена перпендикулярно этой плоскости по её внешней нормали)
R₂ - ? - реакция левой опорной плоскости (направлена перпендикулярно этой плоскости по её внешней нормали)
Очевидно, что R₁ ⊥ R₂
Проецируем систему сил на направление R₁
R₁ - G · cos 30° = 0
R₁ = G · cos 30° = 300 · 0.866 = 259.8 (H)
Проецируем систему сил на направление R₂
R₂ - G · sin 30° = 0
R₂ = G · sin 30° = 300 · 0.5 = 150 (H)
R₁ = 259.8 H; R₂ = 150 H
Объяснение:
Будем считать, угол между левой и правой опорными плоскостями равен 90°.
G = 300H
R₁ - ? - реакция правой опорной плоскости (направлена перпендикулярно этой плоскости по её внешней нормали)
R₂ - ? - реакция левой опорной плоскости (направлена перпендикулярно этой плоскости по её внешней нормали)
Очевидно, что R₁ ⊥ R₂
Проецируем систему сил на направление R₁
R₁ - G · cos 30° = 0
R₁ = G · cos 30° = 300 · 0.866 = 259.8 (H)
Проецируем систему сил на направление R₂
R₂ - G · sin 30° = 0
R₂ = G · sin 30° = 300 · 0.5 = 150 (H)
a1 = a2 = a3, т.к. нить нерастяжимая
T01 = T02 = T0 по 3 з. Н.
T2 = T3 = T по 3 з. Н.
OX (1): T0 - um1g - T = m1a
OX (2): T - um2g = m2a
OY (3): m0g - T0 = m0a
(1) + (3):
-um1g - T + m0g = a (m1 + m0)
с учетом силы натяжения T = m2a + um2g из (2):
-um1g - m2a - um2g + m0g = a (m1 + m0)
a (m0 + m1 + m2) = m0g - um1g - um2g
a = (m0g - ug (m1 + m2)) / (m0 + m1 + m2)
a = g (m0 - u (m1 + m2)) / (m0 + m1 + m2) (!)
2.
с учетом формулы ускорения в (2):
T - um2g = m2g (m0 - u (m1 + m2)) / (m0 + m1 + m2)
T = m2g (m0 + u (1 - m1 + m2)) / (m0 + m1 + m2) (!)