Будем считать нить нерастяжимой и невесомой. Тогда ускорения обоих тел равны: a1=a2=a. Пусть T1 и T2 - силы натяжения нити, действующие соответственно на тела с массами m1 и m2. Так как по условию масса болка m≠0, то T1≠T2. На тело с массой m1 действует сила тяжести m1*g и противоположно направленная ей сила T1, на тело массой m2 - сила T2 и противоположно направленная ей сила трения μ*m2*g, где g - ускорение свободного падения. По второму закону Ньютона,
m1*g-T1=m1*a
T2-μ*m2*g=m2*a
Так как по условию масса блока m≠0, то к написанным уравнениям нужно добавить уравнение вращательного движения для блока. По третьему закону Ньютона, со стороны тела с массой m1 на нить действует сила -T1, равная и противоположно направленная силе T1. А со стороны тела с массой m2 на нить действует сила -T2, равная и противоположно направленная силе T2. Момент силы -T1 относительно оси блока M1=-T1*R, момент силы -T2 относительно оси блока M2=-T2*R, где R - радиус блока. И так как по условию трением в оси блока пренебрегаем, то согласно уравнению динамики вращательного движения для блока M1-M2=J*ε, где J и ε -момент инерции и угловое ускорение блока. Так как по условию блок является однородным диском, то J=m*R²/2. Таким образом, получены 3 уравнения:
m1*g-T1=m1*a
T2-μ*m2*g=m2*a
T2*R-T1*R=m*R²*ε/2
Так как ε=a/R, то третье уравнение можно записать в виде T2*R-T1*R=m*a*R/2. И тогда, после сокращения третьего уравнения на R, окончательно получаем систему из 3-х уравнений с 3-мя неизвестными:
m1*g-T1=m1*a
T2-μ*m2*g=m2*a
T2-T1=m*a/2.
Полагая g=10 м/с² и подставляя известные значения m, m1, m2 и μ, приходим к системе:
ответ: a=28/15 м/с².
Объяснение:
Будем считать нить нерастяжимой и невесомой. Тогда ускорения обоих тел равны: a1=a2=a. Пусть T1 и T2 - силы натяжения нити, действующие соответственно на тела с массами m1 и m2. Так как по условию масса болка m≠0, то T1≠T2. На тело с массой m1 действует сила тяжести m1*g и противоположно направленная ей сила T1, на тело массой m2 - сила T2 и противоположно направленная ей сила трения μ*m2*g, где g - ускорение свободного падения. По второму закону Ньютона,
m1*g-T1=m1*a
T2-μ*m2*g=m2*a
Так как по условию масса блока m≠0, то к написанным уравнениям нужно добавить уравнение вращательного движения для блока. По третьему закону Ньютона, со стороны тела с массой m1 на нить действует сила -T1, равная и противоположно направленная силе T1. А со стороны тела с массой m2 на нить действует сила -T2, равная и противоположно направленная силе T2. Момент силы -T1 относительно оси блока M1=-T1*R, момент силы -T2 относительно оси блока M2=-T2*R, где R - радиус блока. И так как по условию трением в оси блока пренебрегаем, то согласно уравнению динамики вращательного движения для блока M1-M2=J*ε, где J и ε -момент инерции и угловое ускорение блока. Так как по условию блок является однородным диском, то J=m*R²/2. Таким образом, получены 3 уравнения:
m1*g-T1=m1*a
T2-μ*m2*g=m2*a
T2*R-T1*R=m*R²*ε/2
Так как ε=a/R, то третье уравнение можно записать в виде T2*R-T1*R=m*a*R/2. И тогда, после сокращения третьего уравнения на R, окончательно получаем систему из 3-х уравнений с 3-мя неизвестными:
m1*g-T1=m1*a
T2-μ*m2*g=m2*a
T2-T1=m*a/2.
Полагая g=10 м/с² и подставляя известные значения m, m1, m2 и μ, приходим к системе:
10-T1=a
T2-3=3*a
T2-T1=0,25*a
Решая её, находим a=28/15 м/с².
Выразим V из закона Менделеева-Клапейрона:
P V = m R T / M => V = m R T / P M.
А теперь приравняем V1 к V2. И дабы не писать лишнего, сразу посмотрим, что у нас сократится: M, R, m (но сначала я напишу с m для ясности). Получаем:
m T1 / P1 = 0,4 m T2 / P2.
У тебя сейчас, наверное, возник вопрос: почему во второй части уравнения перед m стоит 0,4?
- Потому что исходя из условия задачи мы можем сделать вывод, что m2 = 0,4 m1 (в уравнении m1 заменена на просто m для краткости).
Теперь сокращаем массы, выводим P2:
P2 = 0,4 T2 P1 / T1 = 4*10^-1 * 273 * 2*10^5 / 3*10^2 = 72,8*10^3 Па