Сначала рассчитаем количество теплоты, затраченное на нагревание воды от 0град. , до кипения 100град. Q1=c*m*(t2 - t1) ( c -удельная теплоемкость воды=4200Дж/кг*град, m -масс=0,1кг ( в системе СИ) , t1 - начальная температура воды=0град. , t2 -конечная темпер. =100град) . Q1=4200*0,1*(100-0)=42000Дж. Теперь рассчитаем количество теплоты, затраченное для испарения: Q2=r*m ( r или L - удельная теплота парообразования воды=2300000Дж/кг) . Q2=2300000*0,1=230000Дж. Q=Q1+Q2 ( все затраченное количество теплоты) . Q=42000+230000=272000Дж. Q=272000Дж. ( 272кДж).
Q₁ - заряд в точке А q₂ - заряд в точке В найти АС
Выберем систему отсчета связав ее начало с точкой А, тогда АВ = 1 м. В точке С напряженность результирующего поля равна нулю, т. к. векторы Еа и Ев равны и направлены в противоположные стороны Координата точки С равна х м, сл-но АС = х м Выразим модуль напряженности в точке С созданный зарядом q₁ Ea = k*|q₁|/AC² = k*q₁/x² Выразим модуль напряженности в точке С созданный зарядом q₂ Eb = k*|q₂|/CB² = k*q₂/(1-x)² Ea = Eb k*q₁/x² = k*q₂/(1-x)² q₁*(1-x)² = q₂*x² q₁*(1-2x+x²) = q₂*x², раскрываем скобки, преобразуем и получаем (q₂ - q₁)*x² + 2q₁*x - q₁ = 0, подставляем численные значения (6*10⁻¹⁰ - 2*10⁻¹⁰)*x² +2*2*10⁻¹⁰*x - 2*10⁻¹⁰ = 0, вычитаем и делим на 4*10⁻¹⁰ x² + x - 0,5 = 0 Находим дискриминант D = 1² - 4 * (-0,5) = 1 + 2 = 3 х₁ = (-1 + корень(3)) / 2 ≈ 0,4 м х₂ = (-1 - корень(3)) / 2 ≈ -1,4 м - не удовлетворяет условию задачи, т. к. в точке D векторы Еа и Ев сонаправлены (смотри чертеж) и напряженность результирующего поля в этой точке не будет равна нулю! ответ: в точке С на расстоянии 0,4 м от точки А напряженность электрического поля равна нулю.
Q1=c*m*(t2 - t1) ( c -удельная теплоемкость воды=4200Дж/кг*град, m -масс=0,1кг ( в системе СИ) , t1 - начальная температура воды=0град. , t2 -конечная темпер. =100град) . Q1=4200*0,1*(100-0)=42000Дж.
Теперь рассчитаем количество теплоты, затраченное для испарения:
Q2=r*m ( r или L - удельная теплота парообразования воды=2300000Дж/кг) .
Q2=2300000*0,1=230000Дж.
Q=Q1+Q2 ( все затраченное количество теплоты) .
Q=42000+230000=272000Дж.
Q=272000Дж. ( 272кДж).
q₂ - заряд в точке В
найти АС
Выберем систему отсчета связав ее начало с точкой А, тогда АВ = 1 м.
В точке С напряженность результирующего поля равна нулю, т. к. векторы Еа и Ев равны и направлены в противоположные стороны
Координата точки С равна х м, сл-но АС = х м
Выразим модуль напряженности в точке С созданный зарядом q₁
Ea = k*|q₁|/AC² = k*q₁/x²
Выразим модуль напряженности в точке С созданный зарядом q₂
Eb = k*|q₂|/CB² = k*q₂/(1-x)²
Ea = Eb
k*q₁/x² = k*q₂/(1-x)²
q₁*(1-x)² = q₂*x²
q₁*(1-2x+x²) = q₂*x², раскрываем скобки, преобразуем и получаем
(q₂ - q₁)*x² + 2q₁*x - q₁ = 0, подставляем численные значения
(6*10⁻¹⁰ - 2*10⁻¹⁰)*x² +2*2*10⁻¹⁰*x - 2*10⁻¹⁰ = 0, вычитаем и делим на 4*10⁻¹⁰
x² + x - 0,5 = 0
Находим дискриминант D = 1² - 4 * (-0,5) = 1 + 2 = 3
х₁ = (-1 + корень(3)) / 2 ≈ 0,4 м
х₂ = (-1 - корень(3)) / 2 ≈ -1,4 м - не удовлетворяет условию задачи, т. к. в точке D векторы Еа и Ев сонаправлены (смотри чертеж) и напряженность результирующего поля в этой точке не будет равна нулю!
ответ: в точке С на расстоянии 0,4 м от точки А напряженность электрического поля равна нулю.