ДАНО
F =900 H
o/ = 1/8 — плотность
Mo/M =64
Fo — ?
РЕШЕНИЕ
объем шара V= 4/3*piR^3
R^3 = 3*V/(4*pi) <V = M / -подставим
R^3 = 3M/(4*pi*) < это радиус Земли в КУБЕ
Rо^3 = 3Mo/(4*pi*o) < это радиус ДРУГОЙ ПЛАНЕТЫ (ДП) в КУБЕ
получим отношение
R^3 / Ro^3 =3M/(4*pi*) / 3*(64M)/(4*pi*/8) = 1/ 512 = 1 / 8^3
тогда R / Ro = 1 / 8 <радиус ДП в 8 раз больше
формула для силы притяжения
F =GmM/R^2 — это Земля (1)
Fо =GmM/Rо^2 — это ДП (2)
разделим (1) на (2) или наоборот
F / Fo =GmM/R^2 /GmMo/Ro^2 = M/Mo *(Ro / R)^2 = 1/64*(8/1 )^2 = 1
F / Fo = 1 ; Fo =F =900 H
ОТВЕТ 900 H
ДАНО
F =900 H
o/ = 1/8 — плотность
Mo/M =64
Fo — ?
РЕШЕНИЕ
объем шара V= 4/3*piR^3
R^3 = 3*V/(4*pi) <V = M / -подставим
R^3 = 3M/(4*pi*) < это радиус Земли в КУБЕ
Rо^3 = 3Mo/(4*pi*o) < это радиус ДРУГОЙ ПЛАНЕТЫ (ДП) в КУБЕ
получим отношение
R^3 / Ro^3 =3M/(4*pi*) / 3*(64M)/(4*pi*/8) = 1/ 512 = 1 / 8^3
тогда R / Ro = 1 / 8 <радиус ДП в 8 раз больше
формула для силы притяжения
F =GmM/R^2 — это Земля (1)
Fо =GmM/Rо^2 — это ДП (2)
разделим (1) на (2) или наоборот
F / Fo =GmM/R^2 /GmMo/Ro^2 = M/Mo *(Ro / R)^2 = 1/64*(8/1 )^2 = 1
F / Fo = 1 ; Fo =F =900 H
ОТВЕТ 900 H
p(в) g Vпогр = m(ц) g + m(л) g, где
Vпогр - объем погруженной части льда, m(ц) и m(л) - масса цинка и льда соответственно
поэтому объем погруженной части льда равен:
Vпогр = (m(ц)/p(в)) + (m(л)/p(в))
пусть вначале столб воды в сосуде имел высоту h1, а после таяния льда - высоту h2. тогда
h1 = (V1 + Vпогр)/S
h2 = (V1 + Vц + V0)/S, где
V1 - объем воды изначально (он никуда не девается), Vц - объем цинковой пластинки, V0 - объем воды, образовавшейся из льда
будем считать, что масса льда равна массе растаявшего льда. тогда V0 = m(л)/p(в). то есть, выражение для Vпогр примет вид:
Vпогр = (m(ц)/p(в)) + V0
уровень воды в сосуде понизился на величину:
Δh = h1 - h2 = (V1 + Vпогр - Vц - V0 - V1)/S
Δh = ((m(ц)/p(в)) + V0 - Vц - V0)/S
Δh = (m(ц)/S) * ((p(ц) - p(в))/(p(в) p(ц)))
площадь основания сосуда равна S = πd²/4. с учетом этого получаем
m(ц) = (π d² p(в) p(ц) Δh)/(4 (p(ц) - p(в))) ≈ 2.47 кг