Где ты нашёл нарушение? Давай считать. 1) Кинули вниз: Потенциальная энергия P=mgh; Кинетическая K=0.5mv^2; P=2*10*6=120 Дж; K=0.5*2*100=100 Дж; Полная энергия E=P+K=220 Дж; На земле она вся будет кинетической. Значит скорость падения равна: v=SQRT(2E/m); v=SQRT(2*220/2); v=14.8 м/с (округлённо) 2) Кинули вбок: Потенциальная энергия P=mgh; Кинетическая K=0.5mv^2; P=2*10*6=120 Дж; K=0.5*2*100=100 Дж; Находим вертикальную скорость из потенциальной энергии: v1=SQRT(2P/m); v1=SQRT(2*120/2); v1=10.95 м/с Складываем её с горизонтальной скоростью по Пифагору и находим полную скорость: v=SQRT(v0^2+v1^2); v=SQRT(100+120); v=SQRT(220); v=14.8 м/с (округлённо) Как видишь, скорости в обоих случаях получились одинаковыми по модулю. Так что никаких противоречий нет.
Давай считать.
1) Кинули вниз: Потенциальная энергия P=mgh;
Кинетическая K=0.5mv^2;
P=2*10*6=120 Дж;
K=0.5*2*100=100 Дж;
Полная энергия E=P+K=220 Дж;
На земле она вся будет кинетической. Значит скорость падения равна:
v=SQRT(2E/m);
v=SQRT(2*220/2);
v=14.8 м/с (округлённо)
2) Кинули вбок: Потенциальная энергия P=mgh;
Кинетическая K=0.5mv^2;
P=2*10*6=120 Дж;
K=0.5*2*100=100 Дж;
Находим вертикальную скорость из потенциальной энергии:
v1=SQRT(2P/m);
v1=SQRT(2*120/2);
v1=10.95 м/с
Складываем её с горизонтальной скоростью по Пифагору и находим полную скорость:
v=SQRT(v0^2+v1^2);
v=SQRT(100+120);
v=SQRT(220);
v=14.8 м/с (округлённо)
Как видишь, скорости в обоих случаях получились одинаковыми по модулю. Так что никаких противоречий нет.
Количество теплоты, отдаваемое водой равно:
Q1=m1*c1*(5-0)=2*4.2*5=42 кДж
Количество теплоты отдаваемое водой при превращении в лёд:
Q2=m1*l=2*330=660 кДж
Итого: Q12=42+660=702 кДж
Количество теплоты, получаемое льдом для нагревания до 0:
Q3=m2*c2*(40-0)=5*2.1*40=420 кДж
Итак мы имем m1+m2=7 кг льда и избыток теплоты
Q12-Q3=702-420=282 kДж
Этот избыток теплоты пойдёт на таяние некоторого количества льда, которое мы и определим:
m3=282/330=0.855 кг.
Таким образом, после установления теплового равновесия в калориметре окажется
7-0.855= 6.145 кг льда
0.855 кг воды при температуре 0 градусов С