З власного досвіду ви знаєте, що у воді підняти камінь значно легше, ніж коли він лежить на березі, тому що у воді на до приходить виштовхувальна сила.
Закон, за яким можна розраховувати виштовхувальну силу, що діє на занурене в рідину тіло, відкрив давньогрецький вчений Архімед.
Тому виштовхувальну силу часто називають силою Архімеда (FA).
Сила Архімеда зумовлена тим, що тиск рідини збільшується з глибиною (на нижню поверхню зануреного в рідину тіла рідина тисне з більшою силою, ніж на верхню, унаслідок цього рівнодійна сил тиску рідини на всі ділянки поверхні тіла напрямлена вгору - ця рівнодійна і є силою Архімеда).
Унаслідок занурення у воду тіла, підвішеного до пружинних ваг, їх покази зменшаться завдяки виштовхувальній силі: коли кажуть, що занурене у воду тіло «втрачає у вазі», насправді, звичайно, ніякої «втрати у вазі» немає (вага тіла, що перебуває у спокої, завжди дорівнює силі тяжіння), але внаслідок занурення тіла у воду (часткового або повного) вага тіла перерозподіляється між підвісом — вагами і опорою — водою (тому показ ваг дорівнює різниці між вагою тіла та модулем виштовхувальної сили). Тільки із цим застереженням можна умовно назвати показ ваг «вагою тіла у воді». Це так зване гідростатичне зважування, його можна застосовувати, коли густина тіла більша за густину рідини, щоб тіло тонуло у рідині (визначити відношення густини тіла до густини рідини за формулою , це співвідношення дозволяє знайти N3густину тіла, якщо відома густина рідини, або знайти густину рідини, якщо відома густина тіла).
Спочатку з’ясуємо, чому на будь-яке тіло, занурене в рідину, діє сила Архімеда. Тиск у кожній точці рідини передається однаково в усіх напрямках і залежить від глибини. Розглянемо сили тиску, які діють у рідині на всі поверхні зануреного в неї тіла.
Нехай тіло має форму прямокутного паралелепіпеда На верхню грань тіла діє тиск p1 = рр ghl стовпчика рідини висотою h1. Сила тиску на цю поверхню з боку рідини становить F1 = p1S = рр gh1S де рр — густина рідини; S — площа поверхні тіла. Ця сила направлена вертикально вниз.
Тиск рідини на бічні грані змінюється з глибиною. Але на одному й тому самому рівні він однаковий. Тому сили тиску F, які діють на бічні поверхні, однакові й протилежно направлені, а їх рівнодійна дорівнює 0.
Нижня поверхня знаходиться на глибині h2. Її площа така сама, як і верхньої грані. На нижню поверхню тіла діє сила F2 = p2S = рр gh2S, яка направлена вертикально вгору. Оскільки нижня поверхня знаходиться глибше ніж верхня (h2 > h1), а їх площі однакові, то сила F2 більша за силу F1. Їх рівнодійна дорівнює різниці цих сил і направлена вгору. Рівнодійна сил тиску рідини на нижню та верхню грані тіла і є тією результуючою силою, що виштовхує (або намагається виштовхнути) тіло з рідини:
Опыт 1 (рис. 179, а). Если в замкнутый на гальванометр соленоид вдвигать или выдвигать постоянный магнит, то в моменты его вдвигания или выдвигания наблюдается отклонение стрелки гальванометра (возникает индукционный ток); направления отклонений стрелки при вдвигании и выдвигании магнита противоположны. Отклонение стрелки гальванометра тем больше, чем больше скорость движения магнита относительно катушки. При изменении полюсов магнита направление отклонения стрелки изменится. Для получения индукционного тока магнит можно оставлять неподвижным, тогда нужно относительно магнита передвигать соленоид.
Опыт II. Концы одной из катушек, вставленных одна в другую, присоединяются к гальванометру, а через другую катушку пропускается ток. Отклонение стрелки гальванометра наблюдается в моменты включения или выключения тока, в моменты его увеличения или уменьшения или при перемещении катушек друг относительно друга (рис. 179, б). Направления отклонений стрелки гальванометра также противоположны при включении и выключении тока, его увеличении и уменьшении, сближении . и удалении катушек. Обобщая результаты своих многочисленных опытов, Фарадей пришел к выводу, что индукционный ток возникает всегда, когда происходит изменение сцепленного с контуром потока магнитной индукции. Например, при повороте в однородном магнитном поле замкнутого проводящего контура в нем также возникает индукционный ток. В данном случае индукция магнитного поля вблизи проводника остается постоянной, а меняется только поток магнитной индукции через площадь контура. Опытным путем было также установлено, что значение индукционного тока совершенно не зависит от изменения потока магнитной индукции, а определяется лишь скоростью его изменения (в опытах Фарадея также доказывается, что отклонение стрелки гальванометра (сила тока) тем больше, чем больше скорость движения магнита, или скорость изменения силы тока, или скорость движения катушек).
Открытие явления электромагнитной индукции имело большое значение, так как была доказана возможность получения электрического тока с магнитного поля. Этим была установлена взаимосвязь между электрическими и магнитными явлениями, что послужило в дальнейшем толчком для разработки теории электромагнитного поля.
З власного досвіду ви знаєте, що у воді підняти камінь значно легше, ніж коли він лежить на березі, тому що у воді на до приходить виштовхувальна сила.
Закон, за яким можна розраховувати виштовхувальну силу, що діє на занурене в рідину тіло, відкрив давньогрецький вчений Архімед.
Тому виштовхувальну силу часто називають силою Архімеда (FA).
Сила Архімеда зумовлена тим, що тиск рідини збільшується з глибиною (на нижню поверхню зануреного в рідину тіла рідина тисне з більшою силою, ніж на верхню, унаслідок цього рівнодійна сил тиску рідини на всі ділянки поверхні тіла напрямлена вгору - ця рівнодійна і є силою Архімеда).
Унаслідок занурення у воду тіла, підвішеного до пружинних ваг, їх покази зменшаться завдяки виштовхувальній силі: коли кажуть, що занурене у воду тіло «втрачає у вазі», насправді, звичайно, ніякої «втрати у вазі» немає (вага тіла, що перебуває у спокої, завжди дорівнює силі тяжіння), але внаслідок занурення тіла у воду (часткового або повного) вага тіла перерозподіляється між підвісом — вагами і опорою — водою (тому показ ваг дорівнює різниці між вагою тіла та модулем виштовхувальної сили). Тільки із цим застереженням можна умовно назвати показ ваг «вагою тіла у воді». Це так зване гідростатичне зважування, його можна застосовувати, коли густина тіла більша за густину рідини, щоб тіло тонуло у рідині (визначити відношення густини тіла до густини рідини за формулою , це співвідношення дозволяє знайти N3густину тіла, якщо відома густина рідини, або знайти густину рідини, якщо відома густина тіла).
Спочатку з’ясуємо, чому на будь-яке тіло, занурене в рідину, діє сила Архімеда. Тиск у кожній точці рідини передається однаково в усіх напрямках і залежить від глибини. Розглянемо сили тиску, які діють у рідині на всі поверхні зануреного в неї тіла.
Нехай тіло має форму прямокутного паралелепіпеда На верхню грань тіла діє тиск p1 = рр ghl стовпчика рідини висотою h1. Сила тиску на цю поверхню з боку рідини становить F1 = p1S = рр gh1S де рр — густина рідини; S — площа поверхні тіла. Ця сила направлена вертикально вниз.
Тиск рідини на бічні грані змінюється з глибиною. Але на одному й тому самому рівні він однаковий. Тому сили тиску F, які діють на бічні поверхні, однакові й протилежно направлені, а їх рівнодійна дорівнює 0.
Нижня поверхня знаходиться на глибині h2. Її площа така сама, як і верхньої грані. На нижню поверхню тіла діє сила F2 = p2S = рр gh2S, яка направлена вертикально вгору. Оскільки нижня поверхня знаходиться глибше ніж верхня (h2 > h1), а їх площі однакові, то сила F2 більша за силу F1. Їх рівнодійна дорівнює різниці цих сил і направлена вгору. Рівнодійна сил тиску рідини на нижню та верхню грані тіла і є тією результуючою силою, що виштовхує (або намагається виштовхнути) тіло з рідини:
FA = F2 – F1 = p2S - p1S = рр gh2S - рр gh1S = ρрg(h2 — h1)S = ρрg Vт
Як видно з мал. h2 — h1 = h — висота прямокутного паралелепіпеда, а (h2 — h1) S = Vт — його об’єм. Остаточно можна записати, що
Опыт 1 (рис. 179, а). Если в замкнутый на гальванометр соленоид вдвигать или выдвигать постоянный магнит, то в моменты его вдвигания или выдвигания наблюдается отклонение стрелки гальванометра (возникает индукционный ток); направления отклонений стрелки при вдвигании и выдвигании магнита противоположны. Отклонение стрелки гальванометра тем больше, чем больше скорость движения магнита относительно катушки. При изменении полюсов магнита направление отклонения стрелки изменится. Для получения индукционного тока магнит можно оставлять неподвижным, тогда нужно относительно магнита передвигать соленоид.
Опыт II. Концы одной из катушек, вставленных одна в другую, присоединяются к гальванометру, а через другую катушку пропускается ток. Отклонение стрелки гальванометра наблюдается в моменты включения или выключения тока, в моменты его увеличения или уменьшения или при перемещении катушек друг относительно друга (рис. 179, б). Направления отклонений стрелки гальванометра также противоположны при включении и выключении тока, его увеличении и уменьшении, сближении . и удалении катушек. Обобщая результаты своих многочисленных опытов, Фарадей пришел к выводу, что индукционный ток возникает всегда, когда происходит изменение сцепленного с контуром потока магнитной индукции. Например, при повороте в однородном магнитном поле замкнутого проводящего контура в нем также возникает индукционный ток. В данном случае индукция магнитного поля вблизи проводника остается постоянной, а меняется только поток магнитной индукции через площадь контура. Опытным путем было также установлено, что значение индукционного тока совершенно не зависит от изменения потока магнитной индукции, а определяется лишь скоростью его изменения (в опытах Фарадея также доказывается, что отклонение стрелки гальванометра (сила тока) тем больше, чем больше скорость движения магнита, или скорость изменения силы тока, или скорость движения катушек).
Открытие явления электромагнитной индукции имело большое значение, так как была доказана возможность получения электрического тока с магнитного поля. Этим была установлена взаимосвязь между электрическими и магнитными явлениями, что послужило в дальнейшем толчком для разработки теории электромагнитного поля.