Движение на обоих участках было равномерным, поэтому найти время \(t_1\) и \(t_2\) не составит труда.
\[\left\{ \begin{gathered}
{t_1} = \frac{{{S_1}}}{{{\upsilon _1}}} \hfill \\
{t_2} = \frac{{{S_2}}}{{{\upsilon _2}}} \hfill \\
\end{gathered} \right.\]
Так как участки равны по величине \(S_1=S_2=\frac{1}{2}S\), и скорость на первой участке больше скорости на втором в два раза \(\upsilon_1=2\upsilon_2\), то:
1. Сила тока это по сути поток электрического заряда через поперечное сечение проводника. То есть сила тока в 1 А означает, что за 1 с через поперечное сечение проводника пройдёт заряд в 1 Кл. В данной задаче сила тока I=0.1 А, значит за 1 с проходит 0,1 Кл. Так как нужно 10 Кл, то для нахождения времени надо разделить t=10/0,1=100 c. 2. Удельное электрическое сопротивление проводника равно r=R*S/l, где R - электрическое сопротивление всего проводника, S - площадь поперечного сечения проводника, l - длина проводника. Для меди r=0.0175 мкОм*м. Отсюда находим площадь поперечного сечения проводника: S=rl/R; Плотность меди равна p=892 кг/м^3. Получаем массу проводника: m=pV; m=plS; m=prl^2/R; m=892*1.75*10^-8*10^6/2; m=7.805 кг.
Среднюю скорость катера можно сосчитать по формуле:
\[{\upsilon _{ср}} = \frac{{{S_1} + {S_2}}}{{{t_1} + {t_2}}}\]
Движение на обоих участках было равномерным, поэтому найти время \(t_1\) и \(t_2\) не составит труда.
\[\left\{ \begin{gathered}
{t_1} = \frac{{{S_1}}}{{{\upsilon _1}}} \hfill \\
{t_2} = \frac{{{S_2}}}{{{\upsilon _2}}} \hfill \\
\end{gathered} \right.\]
Так как участки равны по величине \(S_1=S_2=\frac{1}{2}S\), и скорость на первой участке больше скорости на втором в два раза \(\upsilon_1=2\upsilon_2\), то:
\[\left\{ \begin{gathered}
{t_1} = \frac{S}{{2{\upsilon _1}}} = \frac{S}{{4{\upsilon _2}}} \hfill \\
{t_2} = \frac{S}{{2{\upsilon _2}}} \hfill \\
\end{gathered} \right.\]
Подставим выражения для времен \(t_1\) и \(t_2\) в формулу средней скорости.
\[{\upsilon _{ср}} = \frac{S}{{\frac{S}{{4{\upsilon _2}}} + \frac{S}{{2{\upsilon _2 = \frac{S}{{\frac{{3S}}{{4{\upsilon _2 = \frac{{S \cdot 4{\upsilon _2}}}{{3S}} = \frac{{4{\upsilon _2}}}{3}\]
Значит необходимая нам скорость \(\upsilon_2\) определяется по такой формуле.
В данной задаче сила тока I=0.1 А, значит за 1 с проходит 0,1 Кл. Так как нужно 10 Кл, то для нахождения времени надо разделить t=10/0,1=100 c.
2. Удельное электрическое сопротивление проводника равно r=R*S/l, где R - электрическое сопротивление всего проводника, S - площадь поперечного сечения проводника, l - длина проводника. Для меди r=0.0175 мкОм*м. Отсюда находим площадь поперечного сечения проводника: S=rl/R;
Плотность меди равна p=892 кг/м^3.
Получаем массу проводника: m=pV;
m=plS;
m=prl^2/R;
m=892*1.75*10^-8*10^6/2;
m=7.805 кг.