Писал-писал, нажал на кнопку – пропало. Что за лажа.
Ну ладно, напишу ещё раз. Слушай сюда.
1. Сначала найди максимальную высоту, на которую поднимется первый мяч. Это будет h0 = v0 ^2 / (2g) = подставил = 4,9 метра. Потом пишешь уравнения движения первого h1 и второго h2 мячей начиная от момента достижения первым наивысшей точки. Уравнения такие: h1 = h0 – gt^2/2; h2 = v0*t – gt^2/2. Поскольку мячи встретились, то h1 = h2. Решай это уравнение: h0 – gt^2/2 = v0*t – gt^2/2, отсюда h0 = V0 * t, узнаёшь t = h0 / v0 = 1/2 с – это время до встречи мячей. Осталась малость – подставил t в любое из двух уравнений движения, например первое, и получаешь profit: h1 = h0 – gt^2/2 = 4,9 – 0,25 * 4,9 = 0,75 * 4,9 = 3,75 метра.
2. По закону сохранения энергии: в начале задачи столб имеет потенциальную энергию Еп=mgh*1/2 (половина, потому что центр масс столба находится на половине высоты его верхушки, смекнул?). В конце задачи столб имеет кинетическую энергию Ек=1/2 * I * w^2, где I – момент инерции стержня I = 1/3 * m * h^2, w – угловая скорость столба в момент падения. Приравнял энергии, подставил момент инерции, сократил массу, выразил w = корень из ( 3 * g / h). Поскольку линейная скорость v = w * h, то подставил опять, и получил v = корень из ( 3 * g * h ) = корень из ( 3 * 9,81 * 5 ) = у меня получилось что-то типа 12 м/с.
Третью не знаю, мы ещё частицы не проходили. Там, говорят, квантовая механика какая-то. Учительнице привет, поцелуй её от меня. Если моё решение на проверку окажется неправильным, то дай мне знать, ладно?
Деревянный шарик удерживается внутри цилиндрического стакана с водой нитью, прикреплённой к его дну. Шарик погружён в воду целиком и не касается ни стенок, ни дна стакана. Из стакана с шприца откачивается порция воды объёмом V=100 мл, в результате чего уровень воды в стакане понижается на ΔH=28 мм = 2,8 см, сила натяжения нити падает втрое: F/f = 3 и шарик оказывается погружён в воду лишь частично. Определите силу натяжения нити до откачки воды из стакана. ответ выразите в Н, округлив до десятых. Плотность воды ρ =1 г/см³ = 10³кг/м³, площадь дна стакана S=50 см². Ускорение свободного падения g=10 Н/кг. РЕШЕНИЕ: Очевидно, что изначально шарик «касался» поверхности воды (но не вылезал из неё). Тогда если мы откачали 100 мл, а уровень в цилиндре понизился на 2,8 см, то над водой стала выступать часть шарика объёмом: v = S*ΔH – V = 50*2,8 – 100 = 40 мл = 40/10⁶ м³. Значит, выталкивающая сила уменьшилась на ΔF = ρgv, т. е. f = F – ΔF. А поскольку: F/f = 3, то → F/(F – ΔF) = 3, откуда: F = 3F – 3ΔF, или: 2F = 3ΔF. Отсюда: F = (3/2)*ΔF = 1,5*ρgv = 1,5*10³*10*40/10⁶ = 60/10² H = 0,6 H.
Писал-писал, нажал на кнопку – пропало. Что за лажа.
Ну ладно, напишу ещё раз. Слушай сюда.
1. Сначала найди максимальную высоту, на которую поднимется первый мяч. Это будет h0 = v0 ^2 / (2g) = подставил = 4,9 метра. Потом пишешь уравнения движения первого h1 и второго h2 мячей начиная от момента достижения первым наивысшей точки. Уравнения такие: h1 = h0 – gt^2/2; h2 = v0*t – gt^2/2. Поскольку мячи встретились, то h1 = h2. Решай это уравнение: h0 – gt^2/2 = v0*t – gt^2/2, отсюда h0 = V0 * t, узнаёшь t = h0 / v0 = 1/2 с – это время до встречи мячей. Осталась малость – подставил t в любое из двух уравнений движения, например первое, и получаешь profit: h1 = h0 – gt^2/2 = 4,9 – 0,25 * 4,9 = 0,75 * 4,9 = 3,75 метра.
2. По закону сохранения энергии: в начале задачи столб имеет потенциальную энергию Еп=mgh*1/2 (половина, потому что центр масс столба находится на половине высоты его верхушки, смекнул?). В конце задачи столб имеет кинетическую энергию Ек=1/2 * I * w^2, где I – момент инерции стержня I = 1/3 * m * h^2, w – угловая скорость столба в момент падения. Приравнял энергии, подставил момент инерции, сократил массу, выразил w = корень из ( 3 * g / h). Поскольку линейная скорость v = w * h, то подставил опять, и получил v = корень из ( 3 * g * h ) = корень из ( 3 * 9,81 * 5 ) = у меня получилось что-то типа 12 м/с.
Третью не знаю, мы ещё частицы не проходили. Там, говорят, квантовая механика какая-то. Учительнице привет, поцелуй её от меня. Если моё решение на проверку окажется неправильным, то дай мне знать, ладно?
РЕШЕНИЕ:
Очевидно, что изначально шарик «касался» поверхности воды (но не вылезал из неё). Тогда если мы откачали 100 мл, а уровень в цилиндре понизился на 2,8 см, то над водой стала выступать часть шарика объёмом: v = S*ΔH – V = 50*2,8 – 100 = 40 мл = 40/10⁶ м³.
Значит, выталкивающая сила уменьшилась на ΔF = ρgv, т. е. f = F – ΔF.
А поскольку: F/f = 3, то →
F/(F – ΔF) = 3, откуда: F = 3F – 3ΔF, или: 2F = 3ΔF.
Отсюда: F = (3/2)*ΔF = 1,5*ρgv = 1,5*10³*10*40/10⁶ = 60/10² H = 0,6 H.