Коливальний контур складається з котушки індуктивністю 0,2 мгн і двох однакових конденсаторів ємністю 4 які з'єднані паралельно визначити період вільних коливань у просторі
• нам полезно изменить потенциальную энергию тела, которое мы поднимаем по наклонной плоскости. у подножия плоскости высота равна нулю, тогда Aполез = mgH
• работа затраченная определяется работой силы тяги, посредством которой мы поднимаем груз на наклонную плоскость: Азатр = Атяг
Атяг = Fтяг S
пусть поднятие осуществляется равномерно и прямолинейно, тогда геометрическая сумма всех сил, действующих на тело, равна нулю
на тело действуют:
• сила тяжести • сила тяги • сила трения • сила нормальной реакции опоры
направим ось вдоль плоскости вверх, в проекции на нее получим
Fтяг - Fтр - mgsinα = 0,
Fтяг = u mgcosα + mgsinα = mg (u cosα + sinα).
тогда работа силы тяги равна Атяг = mgL (u cosα + sinα).
соответственно, КПД равен n = (mgH)/(mgL (u cosα + sinα),
n = H/(L(u cosα + sinα)), где
sinα = H/L, cosα = √(1-sin²α).
при желании, можно вывести формулу без синуса и косинуса, но это лишнее
Сопоставим уравнения переноса. или уравнение Фика для диффузии.
Коэффициент диффузии .
или уравнение Ньютона для трения.
Коэффициент вязкости
или уравнение Фурье для теплопроводности.
Коэффициент теплопроводности .
Все эти законы были установлены опытно, задолго до обоснования молекулярно-кинетической теорией. Эта теория позволила установить, что внешнее сходство уравнений обусловлено общностью лежащего в их основе молекулярного механизма перемешивания молекул в процессе их теплового хаотического движения.
Однако к концу XIX века, несмотря на блестящие успехи молекулярно-кинетической теории, ей недоставало твёрдой опоры – прямых экспериментов, доказывающих существование атомов и молекул. Это дало возможность некоторым философам, проповедовавшим субъективный идеализм, заявлять, что схожесть формул – это произвол учёных, упрощённое математическое описание явлений.
Но это, конечно, не так. Все вышеуказанные коэффициенты связаны между собой и все выводы молекулярно-кинетической теории подтверждены опытно.
Зависимость коэффициентов переноса от давления Р
Так как скорость теплового движения молекул и не зависит от давления Р, а коэффициент диффузии D ~ λ, то и зависимость D от Р должна быть подобна зависимости λ(Р). При обычных давлениях и в разряженных газах ; в высоком вакууме D = const.
С ростом давления λ уменьшается и затрудняется диффузия ().
В вакууме и при обычных давлениях , отсюда и .
С увеличением Р и ρ, повышается число молекул, переносящих импульс из слоя в слой, но зато уменьшается расстояние свободного пробега λ. Поэтому вязкость η и теплопроводность χ, при высоких давлениях, не зависят от Р (η и χ – const). Все эти результаты подтверждены экспериментально.
Рис. 3.7
На рисунке 3.7 показаны зависимости коэффициентов переноса и длины свободного пробега λ от давления Р. Эти зависимости широко используют в технике (например, при измерении вакуума).
Молекулярное течение. Эффузия газов
Молекулярное течение – течение газов в условиях вакуума, то есть когда молекулы не сталкиваются друг с другом.
В вакууме происходит передача импульса непосредственно стенкам сосуда, то есть происходит трение газа о стенки сосуда. Трение перестаёт быть внутренним, и понятие вязкости теряет свой прежний смысл (как трение одного слоя газа о другой).
Течение газа в условиях вакуума через отверстие (под действием разности давлений) называется эффузией газа.
Как при молекулярном течении, так и при эффузии, количество протекающего в единицу времени газа обратно пропорционально корню квадратному из молярной массы:
(3.6.1)
Эту зависимость тоже широко используют в технике, например для разделения изотопов газа U235 (отделяют от U238, используя газ UF6).
• нам полезно изменить потенциальную энергию тела, которое мы поднимаем по наклонной плоскости. у подножия плоскости высота равна нулю, тогда Aполез = mgH
• работа затраченная определяется работой силы тяги, посредством которой мы поднимаем груз на наклонную плоскость: Азатр = Атяг
Атяг = Fтяг S
пусть поднятие осуществляется равномерно и прямолинейно, тогда геометрическая сумма всех сил, действующих на тело, равна нулю
на тело действуют:
• сила тяжести
• сила тяги
• сила трения
• сила нормальной реакции опоры
направим ось вдоль плоскости вверх, в проекции на нее получим
Fтяг - Fтр - mgsinα = 0,
Fтяг = u mgcosα + mgsinα = mg (u cosα + sinα).
тогда работа силы тяги равна Атяг = mgL (u cosα + sinα).
соответственно, КПД равен n = (mgH)/(mgL (u cosα + sinα),
n = H/(L(u cosα + sinα)), где
sinα = H/L,
cosα = √(1-sin²α).
при желании, можно вывести формулу без синуса и косинуса, но это лишнее
Сопоставим уравнения переноса. или уравнение Фика для диффузии.
Коэффициент диффузии .
или уравнение Ньютона для трения.
Коэффициент вязкости
или уравнение Фурье для теплопроводности.
Коэффициент теплопроводности .
Все эти законы были установлены опытно, задолго до обоснования молекулярно-кинетической теорией. Эта теория позволила установить, что внешнее сходство уравнений обусловлено общностью лежащего в их основе молекулярного механизма перемешивания молекул в процессе их теплового хаотического движения.
Однако к концу XIX века, несмотря на блестящие успехи молекулярно-кинетической теории, ей недоставало твёрдой опоры – прямых экспериментов, доказывающих существование атомов и молекул. Это дало возможность некоторым философам, проповедовавшим субъективный идеализм, заявлять, что схожесть формул – это произвол учёных, упрощённое математическое описание явлений.
Но это, конечно, не так. Все вышеуказанные коэффициенты связаны между собой и все выводы молекулярно-кинетической теории подтверждены опытно.
Зависимость коэффициентов переноса от давления Р
Так как скорость теплового движения молекул и не зависит от давления Р, а коэффициент диффузии D ~ λ, то и зависимость D от Р должна быть подобна зависимости λ(Р). При обычных давлениях и в разряженных газах ; в высоком вакууме D = const.
С ростом давления λ уменьшается и затрудняется диффузия ().
В вакууме и при обычных давлениях , отсюда и .
С увеличением Р и ρ, повышается число молекул, переносящих импульс из слоя в слой, но зато уменьшается расстояние свободного пробега λ. Поэтому вязкость η и теплопроводность χ, при высоких давлениях, не зависят от Р (η и χ – const). Все эти результаты подтверждены экспериментально.
Рис. 3.7
На рисунке 3.7 показаны зависимости коэффициентов переноса и длины свободного пробега λ от давления Р. Эти зависимости широко используют в технике (например, при измерении вакуума).
Молекулярное течение. Эффузия газов
Молекулярное течение – течение газов в условиях вакуума, то есть когда молекулы не сталкиваются друг с другом.
В вакууме происходит передача импульса непосредственно стенкам сосуда, то есть происходит трение газа о стенки сосуда. Трение перестаёт быть внутренним, и понятие вязкости теряет свой прежний смысл (как трение одного слоя газа о другой).
Течение газа в условиях вакуума через отверстие (под действием разности давлений) называется эффузией газа.
Как при молекулярном течении, так и при эффузии, количество протекающего в единицу времени газа обратно пропорционально корню квадратному из молярной массы:
(3.6.1)
Эту зависимость тоже широко используют в технике, например для разделения изотопов газа U235 (отделяют от U238, используя газ UF6).