Космический крейсер "Прометей" летел с постоянной скоростью 11 м/с, в результате взрыва своего двигателя он разделился на две части. Большая его часть, масса которой составляла 0,64 массы всего крейсера, продолжала двигаться в прежнем направлении, но с увеличенной скоростью 35 м/с. Найти скорость меньшей части. ответ введите в (м/с) с точностью до сотых.
1) Кладём линейку на карандаш как сказано в задании.
2) Возьмём четыре монеты по 1 рублю.
3) Кладём 1 монету на 4 см с одной стороны от точки опоры.
4) Кладём стопку из трёх монет на 1 см от точки опоры.
5) Если что-то где-то перевешивает чуть-чуть сдвигаем.
6) Собственно измеряем длину плеч, т.е. расстояние от точки опоры до монет с обеих сторон.
7) Правило рычага - рычаг находится в равновесии, когда силы, действующие на него обратно пропорциональны плечам этой силы.
F1/F2 = l2/l1
Подставляем числа и всё))
И я не вылитый художник ;)
Подробнее - на -
Объяснение:
Дано:
U0=200 В, P0=400 Вт, t1=t2, R−?
Решение задачи:
Схема к решению задачи Если чайники, нагревая одно и то же количество воды, закипают за одно и то же время, значит в них выделяется одна и та же мощность, то есть:
P1=P2(1)
Сначала определим сопротивление чайников R0. Так как при напряжении U0 они потребляют мощность P0, то сопротивление R0 найдем следующим образом:
P0=U20R0⇒R0=U20P0(2)
Найдем мощность P1, выделяющуюся в каждом чайнике при их последовательном соединении. Пусть напряжение сети, к которым подключены чайники, равно U. Тогда через чайники будет течь ток I1, который можно определить по закону Ома:
I1=UR+2R0
Тогда мощность P1 равна:
P1=I21R0
P1=U2R0(R+2R0)2
Далее определим мощность P2, выделяющуюся в каждом чайнике при их параллельном соединении. Через соединительные провода будет течь ток I2, который также определим из закона Ома:
I2=UR+0,5R0
Так как чайники одинаковые (то есть имеют одинаковые сопротивления), то через них течет ток I22. Тогда мощность P2 равна:
P2=(I22)2R0=14I22R0
P2=U2R04(R+0,5R0)2
Учитывая (1), имеем:
U2R0(R+2R0)2=U2R04(R+0,5R0)2
(R+2R0)2=4(R+0,5R0)2
Раскроем скобки в обеих частях уравнения:
R2+4RR0+4R20=4R2+4RR0+R20
R2+4R20=4R2+R20
3R2=3R20
R=R0
Принимая во внимание (2), получим:
R0=U20P0
Численный ответ задачи равен:
R0=2002400=100Ом=0,1кОм
Объяснение: