Космонавт, масса которого 60 кг, находится на орбитальной станции, вращающейся на высоте 499 км над поверхностью Земли. Определите силу тяжести, действующая на космонавта?
Температура однородного медного цилиндрического проводника длинной 10м в течении 57 с повысилась на 10К. Определить напряжение, которое было приложено к проводнику в это время. Изменением сопротивления проводника и рассеянием тепла при его нагревании пренебречь
L=10 м
t=57 c
∆T= 10 K
U- ?
РЕШЕНИЕ
Количество тепла выделенное проводником по з-ну Дж-Ленца
Q1=U^2/R *t (1)
Сопротивление проводника длиной L
R=λL/S (2)
λ-удельное электрическое сопротивление меди =0.017 Ом*мм2/м=0.017*10^-6 Ом*м
S –поперечное сечение проводника
L-длина проводника
Подставим (2) в (1)
Q1=U^2/( λL/S) *t = U^2*S*t/( λL) (3)
Количество тепла полученное проводником от работы тока
Q2=сm∆T=cVp∆T=cLSp∆T (4)
С-удельная теплоемкость меди =400 Дж/кг*К
m-масса проводника
V-объем проводника
р-плотность меди =8920 кг/м3
по условию задачи потерь тепла нет, тогда
Q1=Q2
Приравняем (3) и (4)
U^2*S*t/( λL)= cLSp∆
U^2 =1/t *( cLp∆T)*( λL)=1/t *c λ p L^2*∆T
U=√(1/t *c λ p L^2*∆T)= √(1/57*400*0.017*10^-6*8920*10^2*10) = 1 В
1) Изначально шар находится на некоторой высоте h1 с длиной нити l. Затем его опускают и в положении дальнейшего соударения с пулей шар имеет скорость V1. Запишем закон сохранения энергии:
Сокращаем m1. Рассмотрим cosα:
Откуда выводим h1:
Выводим из ЗСЭ V1, подставляя формулу для h1:
2) Закон сохранения импульса по горизонтали для пули и шара, спроецированный на некоторую ось ОХ, направленную в сторону движения пули, имеет вид:
,
где V1' - скорость шара после соударения с пулей. Выведем ее:
3) Закон сохранения энергии для шара после соударения с пулей:
1 в
Объяснение:
Температура однородного медного цилиндрического проводника длинной 10м в течении 57 с повысилась на 10К. Определить напряжение, которое было приложено к проводнику в это время. Изменением сопротивления проводника и рассеянием тепла при его нагревании пренебречь
L=10 м
t=57 c
∆T= 10 K
U- ?
РЕШЕНИЕ
Количество тепла выделенное проводником по з-ну Дж-Ленца
Q1=U^2/R *t (1)
Сопротивление проводника длиной L
R=λL/S (2)
λ-удельное электрическое сопротивление меди =0.017 Ом*мм2/м=0.017*10^-6 Ом*м
S –поперечное сечение проводника
L-длина проводника
Подставим (2) в (1)
Q1=U^2/( λL/S) *t = U^2*S*t/( λL) (3)
Количество тепла полученное проводником от работы тока
Q2=сm∆T=cVp∆T=cLSp∆T (4)
С-удельная теплоемкость меди =400 Дж/кг*К
m-масса проводника
V-объем проводника
р-плотность меди =8920 кг/м3
по условию задачи потерь тепла нет, тогда
Q1=Q2
Приравняем (3) и (4)
U^2*S*t/( λL)= cLSp∆
U^2 =1/t *( cLp∆T)*( λL)=1/t *c λ p L^2*∆T
U=√(1/t *c λ p L^2*∆T)= √(1/57*400*0.017*10^-6*8920*10^2*10) = 1 В
ответ напряжение 1 В
кг
м
°
кг
м/с
м/с
Найти:
Решение:
1) Изначально шар находится на некоторой высоте h1 с длиной нити l. Затем его опускают и в положении дальнейшего соударения с пулей шар имеет скорость V1. Запишем закон сохранения энергии:
Сокращаем m1. Рассмотрим cosα:
Откуда выводим h1:
Выводим из ЗСЭ V1, подставляя формулу для h1:
2) Закон сохранения импульса по горизонтали для пули и шара, спроецированный на некоторую ось ОХ, направленную в сторону движения пули, имеет вид:
,
где V1' - скорость шара после соударения с пулей. Выведем ее:
3) Закон сохранения энергии для шара после соударения с пулей:
При этом h2 аналогично h1 равен:
Перепишем ЗСЭ в виде:
Откуда cosβ:
°