тут всё немного сложнее и, на самом деле, немного проще одновременно. "не использовать долгое время" - это с точки зрения эволюции вообще не аргумент. тут нужен аргумент посильнее. например, условия жизни резко изменились и вдруг оказалось, что "люди, у которых с рождения (важно: с рождения, в силу какой-то мутации! ) нет мизинца не только выживают, но и лучше размножаются" стало нашей реальностью. и так совпало, что на тот момент таких людей не два и не три, а такая ощутимая кучка. и при этом желательно, чтобы люди с мизинцами мёрли как мухи и имели ограниченный доступ к размножению. причём, всё должно стать именно жёстко: пять пальцев - не жилец, похоже; до репродуктивного возраста точно не доживёт.
вот в ходе такого мысленного эксперимента может сложиться так, что через некоторое время (тысячи лет? десятки тысяч? сколько поколений для этого потребуется? ) численность эти самых более приспособленных четырехпалых людей значительно возрастёт и в конце концов займёт господствующее положение. а старые-добрые пятипалые ещё будут некоторое время рождаться, что будет расцениваться как уродство, как тяжёлая доля и горе в семье. их будут дразнить в садиках и просто изводить в школах. и так будет ещё несколько десятков веков, пока гены неприспособленных пятипалых не потеряются окончательно среди прочно основавшемся четырёхпалом обществе.
а потом в школах уже пожилые и не талантливые учительницы на фоне плакатов "ориентирование в малых туманностях без гравитационного компаса" будут рассказывать, мол, дети, представляете, сто тысяч лет назад у наших предков, которые писали свои примитивные сообщения с клавиатур на намагниченные пластинки (представляете, какая дремучесть) и сидели безвылазно на своей земле, было пять пальцев. и девочка с первой парты такая тянет свою четырёхпалую ручку и спрашивает: "а им не было стыдно? " и будет не совсем понятно - за пятый палец или за хард-
знать совсем немного. Напомним их основные свойства.
1) Характер линзы зависит от радиусов образующих ее
сферических поверхностей и от показателя преломления
материала линзы относительно окружающей среды
n n n = л ср . При n > 1 двояковыпуклая и плосковыпуклая
линзы – собирающие, двояковогнутая и плосковогнутая
линзы – рассеивающие; при n < 1 – наоборот. Эти утверждения следуют из формулы для фокусного расстояния F:
( )
1 2
1 1 1
n 1
F R R
Ê ˆ
= - + Á ˜ Ë ¯ ,
где радиус выпуклой поверхности считается положительным, а радиус вогнутой – отрицательным. Если F положительно, то линза собирающая, в противном случае – рассеивающая. Эту формулу знать полезно, но необязательно.
Пример 1 (ЕГЭ). Из очень тонких одинаковых сферических стеклянных сегментов изготовлены линзы, представленные на рисунке 1. Если показатель преломления глицерина больше, чем показатель преломления воды, то собирающая линза представлена на рисунке: 1); 2); 3); 4).
(ответ: 4).)
2) Для решения задач полезно знать ход основных лучей.
а) Лучи, идущие через оптический центр линзы, не испытывают отклонения.
б) Лучи, падающие параллельно главной оптической оси
(рис.2), сходятся в фокусе, лежащем за линзой – в случае
собирающей линзы, или расходятся из фокуса, лежащего
перед линзой – в случае рассеивающей линзы.
в) Обратное утверждение линзу луч пойдет
параллельно ее главной оптической оси, если линия его
падения проходит через фокус собирающей линзы, лежащий
перед линзой, или через фокус рассеивающей линзы, лежащий за линзой (рис.3).
Пример 2. На собирающую линзу с фокусным расстоянием F1
= 17 см падает пучок света, параллельный ее главной
оптической оси. На каком расстоянии от этой линзы
нужно поставить рассеивающую линзу с фокусным расстоянием
F2
= 0,09 м, чтобы
пучок, пройдя обе линзы, остался параллельным?
(ответ: 1 2 l F F = - =
= 8 см; см. рис.4.)
г) Лучи, идущие параллельно друг другу, но не параллельно главной оптической оси (рис.5), собираются в точке
фокальной плоскости, расположенной за линзой (собирающая линза), или расходятся из точки фокальной плоскости,
расположенной перед линзой (рассеивающая линза).
Пример 3. Постройте ход произвольного луча после
прохождения собирающей (рассеивающей) линзы.
(ответ: см. рис.6; пунктиром показан вс
луч.)
3)Формула тонкой
линзы. Точечным источником обычно называют светящуюся
точку, испускающую
световые лучи в сторону линзы. Более общее определение: источник – это точка
Рис. 1
Рис. 2
Рис. 3
Рис. 4
Рис. 5
Рис. 6
Рис. 7
пересечения лучей, падающих на линзу (такое определение
позволяет вводить в рассмотрение мнимые источники; см.
рис.7). Изображением точечного источника называют точку пересечения лучей линзу. Расстояния от
источника до линзы d, от изображения до линзы f и фокусное
расстояние F связаны соотношением
1 1 1 D
d f F
+ = = , (1)
где D – оптическая сила линзы, выражается в диоптриях,
1 дптр = 1/м. При применении формулы тонкой линзы (1)
надо пользоваться следующими правилами знаков:
а) F и D положительны для собирающей линзы (действительный фокус) и отрицательны для рассеивающей линзы
(мнимый фокус);
б) f > 0 для действительного изображения, f < 0 для
мнимого изображения.
в) d > 0 для действительного источника, d < 0 для мнимого
источника.
Замечание. При решении задач удобнее считать f, d и F
положительными, а знаки учитывать в явном виде. Тогда
формула (1) принимает вид
± ± = ± = 1 1 1 D
d f F (2)
(оптическая сила D может быть как положительной, так и
отрицательной).
Пример 4. На линзу падает сходящийся пучок лучей.
После прохождения через линзу лучи пересекаются в точке,
лежащей на расстоянии 15 см от линзы. Если линзу убрать, то точка пересечения лучей переместится на 5 см
ближе к линзе. Определите фокусное расстояние линзы.
В этом случае формула (2) принимает вид
1 1 1
d f F
- + = ,
где d = 10 см (мнимый источник), f = 15 см (действительное
изображение). Получаем F = –30 см. Поскольку тип линзы
не был задан, то правую часть формулы мы написали с
плюсом, а по знаку ответа установили, что линза рассеивающая.
4) Увеличение линзы. Увеличением линзы (точнее –
линейным увеличением, поскольку есть еще и угловое)
называется отношение линейных размеров изображения к
линейным размерам предмета. Для поперечного увеличения,
т.е. для размеров в направлении, перпендикулярном главной
оптической оси, верна формула
H f
h d
Γ = = , (3)
которая следует из подобия соответствующих треугольников
(рис.8). Отметим, что если пользоваться формулой линзы в
форме (1), то формулу
(3) надо писать с модулями, что неудобно, или
вводить отрицательное Γ
для случая прямого (не
перевернутого) изображения, т.е. когда источник и изображение находятся по одну сторону от
линзы (например, действительный источник и мнимое изображение). Такой подход возможен, но он слишком формален и чреват ошибками.
ответ:
объяснение:
тут всё немного сложнее и, на самом деле, немного проще одновременно. "не использовать долгое время" - это с точки зрения эволюции вообще не аргумент. тут нужен аргумент посильнее. например, условия жизни резко изменились и вдруг оказалось, что "люди, у которых с рождения (важно: с рождения, в силу какой-то мутации! ) нет мизинца не только выживают, но и лучше размножаются" стало нашей реальностью. и так совпало, что на тот момент таких людей не два и не три, а такая ощутимая кучка. и при этом желательно, чтобы люди с мизинцами мёрли как мухи и имели ограниченный доступ к размножению. причём, всё должно стать именно жёстко: пять пальцев - не жилец, похоже; до репродуктивного возраста точно не доживёт.
вот в ходе такого мысленного эксперимента может сложиться так, что через некоторое время (тысячи лет? десятки тысяч? сколько поколений для этого потребуется? ) численность эти самых более приспособленных четырехпалых людей значительно возрастёт и в конце концов займёт господствующее положение. а старые-добрые пятипалые ещё будут некоторое время рождаться, что будет расцениваться как уродство, как тяжёлая доля и горе в семье. их будут дразнить в садиках и просто изводить в школах. и так будет ещё несколько десятков веков, пока гены неприспособленных пятипалых не потеряются окончательно среди прочно основавшемся четырёхпалом обществе.
а потом в школах уже пожилые и не талантливые учительницы на фоне плакатов "ориентирование в малых туманностях без гравитационного компаса" будут рассказывать, мол, дети, представляете, сто тысяч лет назад у наших предков, которые писали свои примитивные сообщения с клавиатур на намагниченные пластинки (представляете, какая дремучесть) и сидели безвылазно на своей земле, было пять пальцев. и девочка с первой парты такая тянет свою четырёхпалую ручку и спрашивает: "а им не было стыдно? " и будет не совсем понятно - за пятый палец или за хард-
Решение задач
на тонкие линзы
А.ЧЕРНОУЦАН
Д
ЛЯ РЕШЕНИЯ ЗАДАЧ С ТОНКИМИ ЛИНЗАМИ НАДО
знать совсем немного. Напомним их основные свойства.
1) Характер линзы зависит от радиусов образующих ее
сферических поверхностей и от показателя преломления
материала линзы относительно окружающей среды
n n n = л ср . При n > 1 двояковыпуклая и плосковыпуклая
линзы – собирающие, двояковогнутая и плосковогнутая
линзы – рассеивающие; при n < 1 – наоборот. Эти утверждения следуют из формулы для фокусного расстояния F:
( )
1 2
1 1 1
n 1
F R R
Ê ˆ
= - + Á ˜ Ë ¯ ,
где радиус выпуклой поверхности считается положительным, а радиус вогнутой – отрицательным. Если F положительно, то линза собирающая, в противном случае – рассеивающая. Эту формулу знать полезно, но необязательно.
Пример 1 (ЕГЭ). Из очень тонких одинаковых сферических стеклянных сегментов изготовлены линзы, представленные на рисунке 1. Если показатель преломления глицерина больше, чем показатель преломления воды, то собирающая линза представлена на рисунке: 1); 2); 3); 4).
(ответ: 4).)
2) Для решения задач полезно знать ход основных лучей.
а) Лучи, идущие через оптический центр линзы, не испытывают отклонения.
б) Лучи, падающие параллельно главной оптической оси
(рис.2), сходятся в фокусе, лежащем за линзой – в случае
собирающей линзы, или расходятся из фокуса, лежащего
перед линзой – в случае рассеивающей линзы.
в) Обратное утверждение линзу луч пойдет
параллельно ее главной оптической оси, если линия его
падения проходит через фокус собирающей линзы, лежащий
перед линзой, или через фокус рассеивающей линзы, лежащий за линзой (рис.3).
Пример 2. На собирающую линзу с фокусным расстоянием F1
= 17 см падает пучок света, параллельный ее главной
оптической оси. На каком расстоянии от этой линзы
нужно поставить рассеивающую линзу с фокусным расстоянием
F2
= 0,09 м, чтобы
пучок, пройдя обе линзы, остался параллельным?
(ответ: 1 2 l F F = - =
= 8 см; см. рис.4.)
г) Лучи, идущие параллельно друг другу, но не параллельно главной оптической оси (рис.5), собираются в точке
фокальной плоскости, расположенной за линзой (собирающая линза), или расходятся из точки фокальной плоскости,
расположенной перед линзой (рассеивающая линза).
Пример 3. Постройте ход произвольного луча после
прохождения собирающей (рассеивающей) линзы.
(ответ: см. рис.6; пунктиром показан вс
луч.)
3)Формула тонкой
линзы. Точечным источником обычно называют светящуюся
точку, испускающую
световые лучи в сторону линзы. Более общее определение: источник – это точка
Рис. 1
Рис. 2
Рис. 3
Рис. 4
Рис. 5
Рис. 6
Рис. 7
пересечения лучей, падающих на линзу (такое определение
позволяет вводить в рассмотрение мнимые источники; см.
рис.7). Изображением точечного источника называют точку пересечения лучей линзу. Расстояния от
источника до линзы d, от изображения до линзы f и фокусное
расстояние F связаны соотношением
1 1 1 D
d f F
+ = = , (1)
где D – оптическая сила линзы, выражается в диоптриях,
1 дптр = 1/м. При применении формулы тонкой линзы (1)
надо пользоваться следующими правилами знаков:
а) F и D положительны для собирающей линзы (действительный фокус) и отрицательны для рассеивающей линзы
(мнимый фокус);
б) f > 0 для действительного изображения, f < 0 для
мнимого изображения.
в) d > 0 для действительного источника, d < 0 для мнимого
источника.
Замечание. При решении задач удобнее считать f, d и F
положительными, а знаки учитывать в явном виде. Тогда
формула (1) принимает вид
± ± = ± = 1 1 1 D
d f F (2)
(оптическая сила D может быть как положительной, так и
отрицательной).
Пример 4. На линзу падает сходящийся пучок лучей.
После прохождения через линзу лучи пересекаются в точке,
лежащей на расстоянии 15 см от линзы. Если линзу убрать, то точка пересечения лучей переместится на 5 см
ближе к линзе. Определите фокусное расстояние линзы.
В этом случае формула (2) принимает вид
1 1 1
d f F
- + = ,
где d = 10 см (мнимый источник), f = 15 см (действительное
изображение). Получаем F = –30 см. Поскольку тип линзы
не был задан, то правую часть формулы мы написали с
плюсом, а по знаку ответа установили, что линза рассеивающая.
4) Увеличение линзы. Увеличением линзы (точнее –
линейным увеличением, поскольку есть еще и угловое)
называется отношение линейных размеров изображения к
линейным размерам предмета. Для поперечного увеличения,
т.е. для размеров в направлении, перпендикулярном главной
оптической оси, верна формула
H f
h d
Γ = = , (3)
которая следует из подобия соответствующих треугольников
(рис.8). Отметим, что если пользоваться формулой линзы в
форме (1), то формулу
(3) надо писать с модулями, что неудобно, или
вводить отрицательное Γ
для случая прямого (не
перевернутого) изображения, т.е. когда источник и изображение находятся по одну сторону от
линзы (например, действительный источник и мнимое изображение). Такой подход возможен, но он слишком формален и чреват ошибками.
Поэтому мы будем пользоваться формулами (2), (3).