В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
islamghj
islamghj
17.03.2023 18:10 •  Физика

Квадрокоптер взлетел на высоту500м, при этом всеми силами которые действовали на аппарат при его взлёте была совершена суммарная работа 15 кДж. Сила тяги развиваемая двигателем, в1,225 раз больше силы тяжести, а сила сопротивления воздуха в 40 раз меньше силы тяжести. Ускорение свободного падения g=10Н/кг.

Показать ответ
Ответ:
ДианаDi1111
ДианаDi1111
21.09.2022 23:25
1)когда мы выходим из воды, то происходит испарение капелек воды, оставшихся на теле. поглощая при этом много тепла, они отбирают его не только у воздуха, но и у тела. тело охлаждается, и воздух начинает казаться холоднее воды     2)вода при отрицательной температуре замерзает, от человека так или иначе происходит испарение (пота или при выдохе на бороде и усах). в результате разности температур получается конденсат, он и замерзает.      3)бульон кипит при одной и той же температуре (немного выше 100 градусов, так как он солёный), на сильном или слабом огне - всё равно
0,0(0 оценок)
Ответ:
flagmarta
flagmarta
12.04.2020 11:15

L_{1} =\frac{ H \sin2\alpha\cos\beta\sin(\alpha + \beta)}{\sin(\alpha - \beta) \sin(\alpha + \beta)}}\\L_{2} =\frac{ H\sin(2\alpha) \cos\beta(\cos\alpha -\cos\beta+2\cos\beta) }{\sin(\alpha - \beta) \sin(\alpha + \beta) ) }}

Объяснение (вычисления кропотливые, обязательно проверяйте):

У задачи два варианта решения:

1) угол броска направлен ниже линии горизонта

2) угол броска направлен выше линии горизонта

Вариант 1)

Разложим проекции скорости вначале V0 и вконце V1 полёта на оси.

V_{0x} = V_{0} \cos\alpha \\V_{0y} = V_{0} \sin\alpha \\V_{1x} = V_{1} \cos\beta \\V_{1y} = V_{1} \sin\beta

При этом

V_{0x} =V_{1x} \\V_{0}\cos\alpha =V_{1}\cos\beta \\V_{1}=\frac{V_{0}\cos\alpha}{\cos\beta}

Из закона сохранения энергии имеем

\frac{mV_{0y}^{2} }{2} = \frac{mV_{1y}^{2} }{2} + mgH\\\frac{V_{0y}^{2} }{2} = \frac{V_{1y}^{2} }{2} + gH\\\frac{(V_{0} \sin\alpha)^{2} }{2} = \frac{(V_{1} \sin\beta )^{2 } }{2} + gH\\\frac{(V_{0} \sin\alpha)^{2} }{2} = \frac{(\frac{V_{0}\cos\alpha }{\cos\beta } \sin\beta )^{2 } }{2} + gH\\(V_{0} \sin\alpha)^{2} = (\frac{V_{0}\cos\alpha }{\cos\beta } \sin\beta )^{2 } + 2gH\\V_{0}^{2} (\sin\alpha)^{2} - V_{0}^{2}(\frac{\cos\alpha \sin\beta }{\cos\beta } )^{2 } = 2gH\\

V_{0}^{2}( (\sin\alpha)^{2} - (\frac{\cos\alpha \sin\beta }{\cos\beta } )^{2 }) = 2gH\\\\V_{0}^{2}( (\sin\alpha - \frac{\cos\alpha \sin\beta }{\cos\beta } )*(\sin\alpha + \frac{\cos\alpha \sin\beta }{\cos\beta } )}) = 2gH\\\\V_{0}^{2}( (\frac{\sin\alpha \cos\beta - \cos\alpha \sin\beta }{\cos\beta } )*( \frac{\sin\alpha \cos\beta +\cos\alpha \sin\beta }{\cos\beta } )}) = 2gH\\\\

V_{0}^{2}( (\frac{\sin\alpha \cos\beta - \cos\alpha \sin\beta }{\cos\beta } )*( \frac{\sin\alpha \cos\beta +\cos\alpha \sin\beta }{\cos\beta } )}) = 2gH\\V_{0}^{2}( (\frac{\sin(\alpha - \beta) }{\cos\beta } )*( \frac{\sin(\alpha +\beta) }{\cos\beta } )}) = 2gH\\\\V_{0}^{2} =( (\frac{\sin(\alpha - \beta) }{\cos\beta } )*( \frac{\sin(\alpha +\beta) }{\cos\beta } )}) =\frac{ 2gH \cos^{2}\beta }{\sin(\alpha - \beta) \sin(\alpha + \beta) }}

V_{0} =\sqrt{\frac{ 2gH \cos^{2}\beta }{\sin(\alpha - \beta) \sin(\alpha + \beta) }}}

Теперь можно найти время полёта

V_{1y} =V_{0y}+gt\\t=\frac{V_{1y} -V_{0y}}{g} =\frac{\frac{V_{0y}\cos\alpha }{\cos\beta } -V_{0y}}{g}=V_{0y}\frac{\cos\alpha -\cos\beta} {g\cos\beta}=V_{0}\frac{\sin\alpha (\cos\alpha -\cos\beta)} {g\cos\beta}

Пройденный путь будет равен

L=V_{0x} t=V_{0} t \cos\alpha =V_{0}^{2} \frac{\sin\alpha (\cos\alpha -\cos\beta)} {g\cos\beta}\cos\alpha=\frac{ 2gH \cos^{2}\beta }{\sin(\alpha - \beta) \sin(\alpha + \beta) }}*\frac{\sin\alpha (\cos\alpha -\cos\beta)} {g\cos\beta}\cos\alpha\\L=\frac{ 2H \sin\alpha\cos\alpha \cos\beta\sin(\alpha + \beta)}{\sin(\alpha - \beta) \sin(\alpha + \beta)}}\\L=\frac{ H \sin2\alpha\cos\beta\sin(\alpha + \beta)}{\sin(\alpha - \beta) \sin(\alpha + \beta)}}

2) Во втором случае добавится время, которое тело пролетит выше уровня H

Время до середины этого участка траектории будет

V_{0y} -gt_{\frac{1}{2} } =0\\t_{\frac{1}{2}}=\frac{V_{0y}}{g} =\frac{V_{0}\sin\alpha }{g}

Всё время этой части траектории будет

t =\frac{2V_{0}\sin\alpha }{g}

Это время добавляем к времени, полученном в первой части

T = V_{0}\frac{\sin\alpha (\cos\alpha -\cos\beta)} {g\cos\beta}+\frac{2V_{0}\sin\alpha }{g}=V_{0}\frac{\sin\alpha (\cos\alpha -\cos\beta)+2\sin\alpha\cos\beta} {g\cos\beta}

Аналогично вычисляем путь

L=V_{0x} T=V_{0} T \cos\alpha =V_{0}^{2} \frac{\sin\alpha (\cos\alpha -\cos\beta)+2\sin\alpha\cos\beta} {g\cos\beta} \cos\alpha=\\\\\frac{ 2gH \cos^{2}\beta }{\sin(\alpha - \beta) \sin(\alpha + \beta) }}*\frac{\sin\alpha (\cos\alpha -\cos\beta)+2\sin\alpha\cos\beta} {g\cos\beta} \cos\alpha=

\frac{ 2gH \cos\beta }{\sin(\alpha - \beta) \sin(\alpha + \beta) }}*\frac{\sin\alpha\cos\alpha (\cos\alpha -\cos\beta+2\cos\beta)} {g} \\L=\frac{ H\sin(2\alpha) \cos\beta(\cos\alpha -\cos\beta+2\cos\beta) }{\sin(\alpha - \beta) \sin(\alpha + \beta) ) }}


Тело брошено с высоты H под углом α к горизонтальной плоскости. К поверхности земли оно подлетает по
0,0(0 оценок)
Популярные вопросы: Физика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота