Уравнение точки x = ASin(2пft) A = 0.05 м - амплитуда колебаний f = 1/T = 0.5 Гц - частота колебаний Xo = 0.0375 м - смещение, для которого предлагается найти скорость Поскольку нам известно уравнение движения x = ASin(2пft) мы можем найти момент времени to в который имеет место смещение Xo: Xo = ASin(2пfto) откуда to = (ArcSin(Xo/A))/(2пf)
Уравнение для скорости можно получить дифференцированием уравнения для координаты: V(t) = x' = (ASin(2пft))' = 2пfACos(2пft) = 2пfA√(1 - Sin^2(2пft))
Альпинист массой m = 80 кг спускается с отвесной скалы, скользя по вертикальной веревке с ускорением a = 0,4 м/с2, направленным вниз. Пренебрегая массой веревки, определите силу T ее натяжения.
Решение
Согласно третьему закону Ньютона альпинист действует на веревку с такой же по модулю силой, с какой веревка действует на альпиниста. На альпиниста действуют две силы: сила тяжести  направленная вертикально вниз, и упругая сила  веревки, направленная вверх. По второму закону Ньютона
ma = mg – T.
Следовательно, сила натяжения веревки T равна
T = m(g – a) = 752 Н.
Если бы альпинист спускался по веревке с постоянной скоростью или неподвижно висел на ней, то сила T' натяжения была бы равна
x = ASin(2пft)
A = 0.05 м - амплитуда колебаний
f = 1/T = 0.5 Гц - частота колебаний
Xo = 0.0375 м - смещение, для которого предлагается найти скорость
Поскольку нам известно уравнение движения
x = ASin(2пft)
мы можем найти момент времени
to в который имеет место смещение Xo:
Xo = ASin(2пfto)
откуда
to = (ArcSin(Xo/A))/(2пf)
Уравнение для скорости можно получить дифференцированием уравнения для координаты:
V(t) = x' = (ASin(2пft))' = 2пfACos(2пft) = 2пfA√(1 - Sin^2(2пft))
искомая скорость равна:
V(to) = 2пfA√(1 - Sin^2(2пfto)) = 2пfA√(1 - Sin^2((ArcSin(Xo/A = 2пfA√(1 - (Xo/A)^2)) = 6.28*0.5*0.05*√(1 - (0.0375/0.05)^2) = 0.104 м/c
Объяснение:
Альпинист массой m = 80 кг спускается с отвесной скалы, скользя по вертикальной веревке с ускорением a = 0,4 м/с2, направленным вниз. Пренебрегая массой веревки, определите силу T ее натяжения.
Решение
Согласно третьему закону Ньютона альпинист действует на веревку с такой же по модулю силой, с какой веревка действует на альпиниста. На альпиниста действуют две силы: сила тяжести  направленная вертикально вниз, и упругая сила  веревки, направленная вверх. По второму закону Ньютона
ma = mg – T.
Следовательно, сила натяжения веревки T равна
T = m(g – a) = 752 Н.
Если бы альпинист спускался по веревке с постоянной скоростью или неподвижно висел на ней, то сила T' натяжения была бы равна
T' = mg = 784 Н.