Тут без чертежа никак: рисуем наклонную плоскость, на ней тело и расставляем силы: сила тяги вдоль наклонной плоскости вверх, сила трения вдоль плоскости, но вниз, сила тяжести приложена к центру масс тела и направлена ВЕРТИКАЛЬНО вниз, сила реакции опоры приложена к центру масс тела но ВДОЛЬ ПЕРПЕНДИКУЛЯРА К НАКЛОННОЙ ПЛОСКОСТИ. ось ОХ направляем вдоль наклонной плоскости вверх, ось ОУ вдоль вектора силы реакции опоры вверх, угол α=30 угол у основания наклонной плоскости. Теперь нам надо записать 2 закон Ньютона в векторном виде: → → → → → → Fтяг+Fтр+mg+N=ma, теперь нам надо найти проекции этих сил на координатные оси ОХ: Fтяг-Fтр - mg sinα=ma (сила трения имеет отрицательную проекцию, тк. она направлена "против" оси ОХ, mg отрицательна т.к. идем от начала проекции к концу против направления оси, а если опустить перпендикуляр из конца вектора на ОХ то получим, что угол 30 будет лежать напротив проекции, т.е сам вектор при этом будет равен mg sinα) Теперь аналогично находим проекции всех векторов на ОУ: 0+0-mg cosα+N=0 отсюда находим, что N=mg cosα, вспоминаем, что Fтр=μN=μ mg cosα, осталось все собрать в кучу, получаем: Fтяг- μ mg cosα - mg sinα=ma отсюда a=(Fтяг -μ mg cosα -mg sinα)/m=(7000-0,1*1000*10*√3/2 - 1000*10*1/2)/1000=(6150-5000)/1000=1150/1000=1,15 м/с.кв.
Дано: L=1 м - длина стержня
l=0,2 м - изменение глубины погружения стержня
dP= 1Н
p1=1000 кг/(м3) - плотность воды
p2=8900 кг/(м3) - плотность меди
g=10 м/(с2)
Найти массу m стежня?
Решение. Стержень имеет форму прямого цилиндра.
До изменения глубины погружения из первого закона Ньютона имеем:
F1=Fт - Fа1=mg - p1*g*S*x1(1)
где Fа1=p1*g*S*x1 - сила Архимеда, x1- первоначальное погружение стержня
S- площадь поперечного сечения стержня
После изменения глубины погружения стержня из первого закона Ньютона имеем: F2=Fт - Fа2=mg - p1*g*S*x2 (2)
где x2 - глубина погружения после изменения глубины погружения
Вычтем почленно из равенства (1) равенство (2):
F1 - F2=(mg - p1*g*S*x1)-(mg - p1*g*S*x2)=p1*S*g*(x2-x1) (3)
По условию (x2-x1)=l, (F1 - F2)=dP, тогда (3) примет вид:
dP=p1*S*l*g(4)
умножим и разделим правую часть равенства (4) на L, получим:
dP=p1*(S*L)*l*g/L=p1*V*(l/L)*g(5)
где V=S*L - объем стержня, выразим объем V через массу и плотность:
V=m/p2 Тогда (5) примет вид:
dP=(p1/p2)*(l/L)*g*m, выразим отсюда массу m стержня:
m=(L/l)*(p2/p1)*(dP/g)
Расчет: m=(1 /0,2 )*(8900/1000)*(1/10) кг =(8,9/2) кг=4,45 кг
Теперь нам надо записать 2 закон Ньютона в векторном виде: →
→ → → → →
Fтяг+Fтр+mg+N=ma, теперь нам надо найти проекции этих сил на координатные оси ОХ: Fтяг-Fтр - mg sinα=ma (сила трения имеет отрицательную проекцию, тк. она направлена "против" оси ОХ, mg отрицательна т.к. идем от начала проекции к концу против направления оси, а если опустить перпендикуляр из конца вектора на ОХ то получим, что угол 30 будет лежать напротив проекции, т.е сам вектор при этом будет равен mg sinα)
Теперь аналогично находим проекции всех векторов на ОУ: 0+0-mg cosα+N=0 отсюда находим, что N=mg cosα, вспоминаем, что Fтр=μN=μ mg cosα, осталось все собрать в кучу, получаем: Fтяг- μ mg cosα - mg sinα=ma отсюда a=(Fтяг -μ mg cosα -mg sinα)/m=(7000-0,1*1000*10*√3/2 - 1000*10*1/2)/1000=(6150-5000)/1000=1150/1000=1,15 м/с.кв.