зависимость ускорения свободного падения g от высоты h над поверхностью Земли. На какой высоте h ускорение свободного падения gh составит 0,25 ускорения свободного падения g у поверхности Земли.
Дано:
МЗ = 5,976·1024 кг
RЗ = 6,378164·106 м
gh = 0,25 g
g = f(h) - ? h - ?
Используя закон всемирного тяготения, находим силу притяжения Земли и тела массы m
С другой стороны
У поверхности Земли
На высоте h от поверхности Земли
Тогда
- зависимость ускорения свободного падения от высоты h.
Для нахождения высоты, на которой gh = 0,25 g , решаем последнее уравнение относительно h
Спутник движется по круговой орбите, а значит имеет постоянное центростремительное ускорение, определяемое гравитацией. Обозначим радиус Земли, как R, высоту на Землёй, как H и r=R+H :
зависимость ускорения свободного падения g от высоты h над поверхностью Земли. На какой высоте h ускорение свободного падения gh составит 0,25 ускорения свободного падения g у поверхности Земли.
Дано:
МЗ = 5,976·1024 кг
RЗ = 6,378164·106 м
gh = 0,25 g
g = f(h) - ? h - ?
Используя закон всемирного тяготения, находим силу притяжения Земли и тела массы m
С другой стороны
У поверхности Земли
На высоте h от поверхности Земли
Тогда
- зависимость ускорения свободного падения от высоты h.
Для нахождения высоты, на которой gh = 0,25 g , решаем последнее уравнение относительно h
ПЕРВЫЙ
Спутник движется по круговой орбите, а значит имеет постоянное центростремительное ускорение, определяемое гравитацией. Обозначим радиус Земли, как R, высоту на Землёй, как H и r=R+H :
Сила притяжения:
F = GMm/r² = (GMm/R²) R²/r² = mgR²/r² ;
Центростремительное ускорение:
F/m = a = v²/r ;
gR²/r² = v²/r ;
r²/v² = r³/[gR²] ;
T² = (2πr/v)² = 4π²r³/[gR²] ;
T = 2πr/R √[r/g] = 2π/R √[(R+H)³/g] ;
T = 2π/R √[(R+H)³/g] ≈ [ π / 3 200 000 ] √[( 6 400 000 + 1 600 000 )³ / 9.8 ] ≈
≈ [ 5 000 π / 7 ] √10 ≈ 7100 сек ≈ 118 мин ≈ 1 час и 58 мин ;
ВТОРОЙ
Первая космическая скорость (околоземные спутники) равна VI = √[Rg] ;
Период околоземного спутника:
TI = 2πR/VI = 2πR/√[Rg] = 2π√[R/g] ;
По закону Кеплера для единого гравитационного центра верно, что:
T²/TI² = r³/R³ ;
T² = r³/R³ TI² = 4π² [r³/R³]*[R/g] = 4π²r³/[gR²] ;
T = 2πr/R √[r/g] = 2π/R √[(R+H)³/g] ;
T = 2π/R √[(R+H)³/g] ≈ [ π / 3 200 000 ] √[( 6 400 000 + 1 600 000 )³ / 9.8 ] ≈
≈ [ 5 000 π / 7 ] √10 ≈ 7100 сек ≈ 118 мин ≈ 1 час и 58 мин .