Принцип работы такой: с некоей силой F1 мы давим на маленькую площадь, под ней образуется давление, которое давит на большую площадь и за счёт этого даёт большую силу на выходе. Давление есть отнощение силы к площади: P=F/S Раз у нас цилиндр, его сечение круговое и площадь сечения равна: S=П*R^2 = П*(D/2)^2 = П * D^2 / 4 Отнощение площадей будет: S1 / S2 = (П * D1^2 / 4) / (П * D2^2 / 4) = D1^2 / D2^2 = 50*50 / 4*4 = 2500 / 16 = 156,25 Давление силы F1 в большом цилиндре будет равно давлению в малом цилиндре с силой F2: P = F1/S1 = F2/S2 Отсюда F1/F2 = S1/S2 = 156,25 раз
Итак, что у нас происходит. Кусок льда, оказавшись в воде, сначала нагревается до температуры плавления, затем тает. При этом вода в сосуде охлаждается. Коль лед не весь растаял, есть основания полагать, что процесс завершился при температуре 0° С. Тогда вода в сосуде, при охлаждении отдает количество теплоты Q₁: (1) Тут: с₁ - удельная теплоемкость воды 4200 Дж/(кг·К) m₁ - масса воды 1 кг (1л - 1кг) T₀ - начальная температура воды 10°С T₁ - конечная температура воды и льда 0°С
Лед принял количество теплоты Q₂ : (2) Где: с₂ - удельная теплоемкость льда 2060 Дж/(кг·К) m₂ - начальная масса льда T₂ - начальная температура льда -20°С T₁ - конечная температура воды и льда 0°С m₃ - масса растаявшего льда. λ - удельная теплота плавления льда 334*10³ Дж/кг При этом: кг (3)
Составляем уравнение теплового баланса, приравниваем Q₁ и Q₂. При этом, согласно (3) выражаем m₃ через m₂ (4) Теперь из 4 выражаем m₂:
Тогда вода в сосуде, при охлаждении отдает количество теплоты Q₁:
(1)
Тут:
с₁ - удельная теплоемкость воды 4200 Дж/(кг·К)
m₁ - масса воды 1 кг (1л - 1кг)
T₀ - начальная температура воды 10°С
T₁ - конечная температура воды и льда 0°С
Лед принял количество теплоты Q₂ :
(2)
Где:
с₂ - удельная теплоемкость льда 2060 Дж/(кг·К)
m₂ - начальная масса льда
T₂ - начальная температура льда -20°С
T₁ - конечная температура воды и льда 0°С
m₃ - масса растаявшего льда.
λ - удельная теплота плавления льда 334*10³ Дж/кг
При этом:
кг (3)
Составляем уравнение теплового баланса, приравниваем Q₁ и Q₂. При этом, согласно (3) выражаем m₃ через m₂
(4)
Теперь из 4 выражаем m₂:
(5)
Подставляя в (5) числовые значения, получаем:
кг
ответ: Исходная масса льда 0,201 кг=201 г.