Мальчик массы М бежит вверх по неподвижной доске массы m, лежащей на наклонной плоскости с углом при основании α. Трение между доской и плоскостью отсутствует. Какой путь
мальчик к моменту, когда его скорость, равная вначале v0, уменьшилась, не изменив своего направления, в n = 2 раза?
(2,5м - 2·0,15м): 2 =1,1м
груз весом 200кг · 10м/с² = 2000 Н привешен на расстоянии 0,8м от правого конца и на расстоянии 2,2м - 0,8 = 1,4м от левого конца.
балка находится в равновесии, поэтому сумма моментов относительно каждой из опор должна быть равна нулю
момент Мпр = 3200 · 1,1 + 2000 · 0,8 - Rл · 2,2 = 0
Rл = (3520 + 1600):2,2 ≈ 2327,3 Н
момент Мл = -3200 · 1,1 - 2000 · 1,4 + Rпр · 2,2 = 0
Rпр = (3520 + 2800) : 2,2 ≈ 2872,7 Н
Проверка: Сумма реакций опор должна быть равна суммарному весу балки и груза
2327,3 + 2872,7 = 3200+2000
Получаем тождество
5200 ≡ 5200
значит, задача решена верно
ответ: Сила давления на правую опору 2872,7 Н
Сила давления на левую опору 2327,3 Н
1)Q=10*4,1919/0,001*(0-10)= -419190 Дж/кг*град.С
2)10*4,1919*0,001/0,001*(0-10)= -419,19 КДж/кг*град.С 3)10*4,1919*0,000001/0,001*(0-10)= -0,41919 МДж/кг*град.
С= -0,42 МДж/кг*град.С
Вода охладилась на 10 градусов и внутренняя энергия уменьшается на 0,42 МДж/кг.*град.С