Машина за 20 с замедляет движение с 30 м/с до 5 м/с. Рассчитайте для машины: (а) Ускорение торможения. (b) Скорость через 2 с после начала торможения. (c) Скорость через 10 с после начала торможения.
1) Для начала находим два ближайших штриха ( на цене деления линейки ) где определены численное значения величины ( например 0 и 1 см ) и вычитаем из большого численного значения меньше ( 1 - 0 = 1 см )
2) Считаем промежутки между черточками на цене деления линейки всего их 10 ( на промежутке от 0 до 1 см ) и делим разницу большего численного значения из меньшего на число промежутков между ними ( то есть 1 ÷ 10 = 0,1 см )
0,1 см – цена деления шкалы
б) Записываем длину нитки с учётом погрешности
1) Сначала запишем просто длину нитки без учёта погрешности
∆L = L - L1
∆L = 15,6 - 2,4 = 13,2 см – длина без учета погрешности
2) Теперь запишем длину нитки с учётом погрешности
Длина нитки с учётом погрешность будет равна длине нитки без учёта погрешности ± половина цены деления линейки , поэтому
, вы обнаружите, что, поскольку каждое следующее ядро вылетает из ствола с большей начальной скоростью, ядра падают всё дальше и дальше от подножия скалы.
Теперь представьте, что вы забили в пушку столько пороха, что скорости ядра хватает, чтобы облететь вокруг земного шара. Если пренебречь сопротивлением воздуха, ядро, облетев вокруг Земли, вернется в исходную точку точно с той же скоростью, с какой оно изначально вылетело из пушки. Что будет дальше, понятно: ядро на этом не остановится и будет и продолжать наматывать круг за кругом вокруг планеты. Иными словами, мы получим искусственный спутник, обращающийся вокруг Земли по орбите, подобно естественному спутнику — Луне. Так мы поэтапно перешли от описания движения тела, падающего исключительно под воздействием «земной» гравитации (ньютоновского яблока), к описанию движения спутника (Луны) по орбите, не изменяя при этом природы гравитационного воздействия с «земной» на «небесную». Вот это-то прозрение и позволило Ньютону связать воедино считавшиеся до него различными по своей природе две силы гравитационного притяжения.
Остается последний вопрос: правду ли рассказывал на склоне своих дней Ньютон? Действительно ли всё произошло именно так? Никаких документальных свидетельств того, что Ньютон действительно занимался проблемой гравитации в тот период, к которому он сам относит свое открытие, сегодня нет, но документам свойственно теряться. С другой стороны, общеизвестно, что Ньютон был человеком малоприятным и крайне дотошным во всем, что касалось закрепления за ним приоритетов в науке, и это было бы очень в его характере — затемнить истину, если он вдруг почувствовал, что его научному приоритету хоть что-то угрожает. Датируя это открытие 1666-м годом в то
За ранее
L' = ( 13,2 ± 0,05 ) cм
Объяснение:
а) Определяем цену деления линейки:
1) Для начала находим два ближайших штриха ( на цене деления линейки ) где определены численное значения величины ( например 0 и 1 см ) и вычитаем из большого численного значения меньше ( 1 - 0 = 1 см )
2) Считаем промежутки между черточками на цене деления линейки всего их 10 ( на промежутке от 0 до 1 см ) и делим разницу большего численного значения из меньшего на число промежутков между ними ( то есть 1 ÷ 10 = 0,1 см )
0,1 см – цена деления шкалы
б) Записываем длину нитки с учётом погрешности
1) Сначала запишем просто длину нитки без учёта погрешности
∆L = L - L1
∆L = 15,6 - 2,4 = 13,2 см – длина без учета погрешности
2) Теперь запишем длину нитки с учётом погрешности
Длина нитки с учётом погрешность будет равна длине нитки без учёта погрешности ± половина цены деления линейки , поэтому
L' = ( ∆L ± ½ 0,1 ) см
L' = ( 13,2 ± 0,05 ) cм
, вы обнаружите, что, поскольку каждое следующее ядро вылетает из ствола с большей начальной скоростью, ядра падают всё дальше и дальше от подножия скалы.
Теперь представьте, что вы забили в пушку столько пороха, что скорости ядра хватает, чтобы облететь вокруг земного шара. Если пренебречь сопротивлением воздуха, ядро, облетев вокруг Земли, вернется в исходную точку точно с той же скоростью, с какой оно изначально вылетело из пушки. Что будет дальше, понятно: ядро на этом не остановится и будет и продолжать наматывать круг за кругом вокруг планеты. Иными словами, мы получим искусственный спутник, обращающийся вокруг Земли по орбите, подобно естественному спутнику — Луне. Так мы поэтапно перешли от описания движения тела, падающего исключительно под воздействием «земной» гравитации (ньютоновского яблока), к описанию движения спутника (Луны) по орбите, не изменяя при этом природы гравитационного воздействия с «земной» на «небесную». Вот это-то прозрение и позволило Ньютону связать воедино считавшиеся до него различными по своей природе две силы гравитационного притяжения.
Остается последний вопрос: правду ли рассказывал на склоне своих дней Ньютон? Действительно ли всё произошло именно так? Никаких документальных свидетельств того, что Ньютон действительно занимался проблемой гравитации в тот период, к которому он сам относит свое открытие, сегодня нет, но документам свойственно теряться. С другой стороны, общеизвестно, что Ньютон был человеком малоприятным и крайне дотошным во всем, что касалось закрепления за ним приоритетов в науке, и это было бы очень в его характере — затемнить истину, если он вдруг почувствовал, что его научному приоритету хоть что-то угрожает. Датируя это открытие 1666-м годом в то