В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
kanyuka
kanyuka
17.05.2020 01:57 •  Физика

Материальная точка массой 1,8 кг равномерно движется по окружности со скоростью 4,1 м/с. Вычисли модуль изменения импульса материальной точки за половину периода.

Показать ответ
Ответ:
SelesTia3
SelesTia3
17.10.2020 04:18
1. Структура электростатического поля
В силу симметрии задачи, электростатическое поле является центрально-симметричны. т.е. \overline E = E(r) \overline r_0
r₀ - единичный радиус-вектор от заряда к произвольной исследуемой точке пространства.
Задача и её решение инвариантна к повороту (как картинку "ни крути" вокруг заряда, условие задачи и её решение не изменится).

2. Поле при отсутствии шара
Когда у нас есть только точечный заряд модуль напряженности электростатического поля E(r) = k\frac{Q}{r^2}.

Потенциал электростатического поля связан с его напряженностью уравнением:
\phi_1-\phi_2 = \int\limits^{2}_{1} {E} \, dl
Интегрирование ведётся по произвольному пути между точками 1 и 2.

Отступление: если домножить уравнение на пробный заряд, то получим определение потенциальной энергии. Правый ингтеграл в этом случае будет работой, совершенной полем над пробным зарядом.

В нашем случае удобно интегрировать вдоль радиальных линий
\phi_1-\phi_2 = \int\limits^{r_2}_{r_1} {E} \, dr

Замечание: Потенциал определяется всегда с точностью до аддитивной постоянной, поэтому во всех задачах всегда выбирается, так называемое, условие нормировки. В разных задачах оно выбирается по разному, но в задачах данного типа принято брать потенциал бесконечно удаленной точки равным нулю \phi_\infty = 0

\phi_1-\phi_\infty = \phi_1 = \int\limits^{\infty}_{r_1} {E} \, dr

Подставим в эту формулу найденное поле:
\phi = \int\limits^{\infty}_{R} {k \frac{Q}{r^2} } \, dr = kQ\int\limits^{\infty}_{R} { \frac{1}{r^2} } \, dr = kQ ( \lim_{r \to \infty} (- \frac{1}{r}) - (- \frac{1}{R} )) = \frac{kQ}{R}
Получили известный результат. Выразим из этого результата заряд Q.
Q= \frac{\phi R}{k}

3. Поле при добавлении шара.
Для поиска величины напряженности воспользуемся теоремой Гаусса.
\int {\int {E} } \, dS = 4\pi kq
Поток вектора напряженности электростатического поля через любую замкнутую поверхность пропорционален величине свободного заряда, находящегося внутри этой поверхности.

Выберем в качестве такой поверхности сферу радиусом r. В силу структуры поля E(r) = const.
\int {\int {E(r)} } \, dS = E(r)\int {\int {} } \, dS =E(r)*4\pi r^2 = 4\pi kq
E(r) = k \frac{q}{r^2}

Теперь рассмотрим отдельные участки:
1) Участок 0 < r < 3R
E(r) = k \frac{Q}{r^2}
2) Участок 3R<r<4R
E(r) = 0 - электростатического поля внутри идеальных проводников не существует. Если предположить противное, то начнётся движение зарядов и это уже не статика. :)
3) Участок r > 4R
E(r) = k \frac{4Q}{r^2}
4Q - суммарный заряд внутри сферы радиусом r.

Аналогично рассчитаем потенциал.
\phi' = \int\limits^\infty_R {E(r)} \, dr = \int\limits^\infty_{4R} {k \frac{4Q}{r^2} } \, dr + \int\limits^{4R}_{3R} {0} } \, dr +\int\limits^{3R}_{R} {k \frac{Q}{r^2} } \, dr = k \frac{4Q}{4R} + k \frac{Q}{R} - k\frac{Q}{3R}

\phi' = k \frac{5Q}{3R}
Подставляем в это выражение найденное ранее Q и имеем:
\phi' = \frac{5}{3}\phi = 500

Что стоит отметить?
1) Потенциал функция непрерывная. Если знать, что подобные симметричные структуры создают поля аналогичные точечным зарядам, то задача решается в уме.
т.е. мы ищем потенциал на внешней границе шара как потенциал точечного заряда 4Q, на внутренней границе он такой же. Ищем разность потенциалов между внутренней границей и точкой A в поле точечного заряда Q.  Складываем результаты.

2) Несмотря на то, что заряд 3Q на шаре поле внутри шара не создаёт, он увеличивает потенциал точек внутри полости, т.к. создаёт дополнительное поле вне шара. Потенциал - это работа по перемещению точечного заряда из бесконечности в данную точку. Больше поле вне шара - больше работа.

3) Разность потенциалов зависит только от локального поля (поля по в окрестности пути, соединяющего две точки). Сам потенциал зависит от структуры всего поля.
0,0(0 оценок)
Ответ:
Кейл
Кейл
30.12.2020 21:54

Rэ = 5 Ом;

U₁ = U₂ = 10.8 B;  U₃ = 7.2 B;  U₄ = 12 B;  U₅ = 18 B;  U₆ = 30 B;

Расход энергии равен 1,8 кВт ч

Объяснение:

Вычислим сопротивления участков цепи

R_{1-2} = \dfrac{R_1 \cdot R_2}{R_1 + R_2} = \dfrac{10 \cdot 15}{10 + 15}=6 ~(Om)

R_{1+2+3} =R_{1+2} + R_3 = 6 + 4 = 10 ~(Om)

R_{1+2+3+5} = \dfrac{R_{1+2+3} \cdot R_5}{R_{1+2+3} +R_5} = \dfrac{10 \cdot 15}{10 + 15}= 6~(Om)

R_{1+2+3+5+4}= R_{1+2+3+5}+R_4 = 6 + 4 = 10 ~(Om)

Эквивалентное напряжение цепи R равно

R = \dfrac{R_{1+2+3+5+4}\cdot R_6}{R_{1+2+3+5+4}+R_6} = \dfrac{10 \cdot 10}{10+10} =5 ~{Om}

Найдём напряжения на резисторах

U_6 = U_{AB} = 30~(B)

Напряжение на участке с сопротивлением R₁₊₂₊₃₊₅₊₄ так же равно

U₁₊₂₊₃₊₅₊₄ = 30 B

Сила тока через сопротивление  R₄ равна

I_4 = \dfrac{U_{1+2+3+5+4}}{R_{1+2+3+5+4}} = \dfrac{30}{10} = 3~(A)

U_4 = I_4 \cdot R_4 = 3 \cdot 4 = 12~(B)

Напряжение на участке с сопротивлением R₁₊₂₊₃₊₅ равно

U₁₊₂₊₃₊₅ = 30 - 12 = 18 (B)

U₅ = U₁₊₂₊₃₊₅ = 18 B

U₁₊₂₊₃ = 18 B

Сила тока через сопротивление  R₃ равна

I_3 = \dfrac{U_{1+2+3}}{R_{1+2+3}} = \dfrac{18}{10} = 1.8~(A)

U_3 = I_3 \cdot R_3 = 1.8 \cdot 4 = 7.2 ~(B)

Напряжение на участке с сопротивлением R₁₊₂ равно

U₁₊₂ = U₁₊₂₊₃ - U₃ = 18 - 7.2 = 10.8 (B)

U₁ = U₂ = U₁₊₂ = 10.8 B

Работа тока равна

А = U² · t : R = 30² · 10 : 5 = 1800 Вт ч = 1,8 кВт ч

0,0(0 оценок)
Популярные вопросы: Физика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота