Щоб визначити гальмівний шлях і час гальмування автомобіля, необхідно знати прискорення його руху. Прискорення знайдемо, скориставшись другим законом Ньютона.
Виконаємо пояснювальний рисунок, на якому зазначимо сили, що діють на автомобіль, напрямки осей координат, початкової швидкості, переміщення та прискорення (автомобіль зупиняється, тому кінцева швидкість його руху дорівнює нулю, а напрямок прискорення протилежний напрямку руху).
Объяснение:
Аналіз результатів. Отримано реальний результат, адже гальмівний шлях автомобіля дійсно досить великий.
Пусть они бегут в одну сторону. l = 400 м Первый бегун пробежал тогда: lk + lλ = v₁t, где 0 ≤ λ ≤ 1, k∈|Ν. Второй соответственно пробежит lm+lλ = v₂t. m∈|Ν. Какой смысл этих уравнений: в момент встречи оба бегуна должны встретится в одной точке, которая характеризуется расстоянием до старта 0 ≤ r < l. r ≡ lλ. При этом каждый из них может пробежать разное число целых кругов. Теперь составим разность этих уравнений и обозначим s = m-k Тогда, ls = (v₂ - v₁)t, преобразуя получим: , где s - любое неотрицательное целое число. Из данного выражения умножая на скорость каждого бегуна можно получить соответствующее расстояние.
Теперь случай, когда они бегут в разные стороны. Точка встречи по прежнему характеризуется расcтоянием r = λl, причём оно будет измеряться по ходу движения первого бегуна. Т.е. уравнение для первого будет: lk + lλ = v₁t А для второго: lm + l(1-λ) = v₂t Сложим их и получим: , где d = m+k+1 - любое натуральное число. Видно, что при d = 1 мы получили обычною формулу для встречного движения.
P.S. Данное решение проведено не совсем формально. Было бы правильнее задать криволинейную ось по стадиону и учитывать знаки скоростей в проекцию на неё, а вместо пути писать координату на ней, но для большей наглядности мы рассматривали модули величин, сразу учитывая, какая скорость больше.
Щоб визначити гальмівний шлях і час гальмування автомобіля, необхідно знати прискорення його руху. Прискорення знайдемо, скориставшись другим законом Ньютона.
Виконаємо пояснювальний рисунок, на якому зазначимо сили, що діють на автомобіль, напрямки осей координат, початкової швидкості, переміщення та прискорення (автомобіль зупиняється, тому кінцева швидкість його руху дорівнює нулю, а напрямок прискорення протилежний напрямку руху).
Объяснение:
Аналіз результатів. Отримано реальний результат, адже гальмівний шлях автомобіля дійсно досить великий.
Відповідь - S= 15 см, t= 2с.
l = 400 м
Первый бегун пробежал тогда: lk + lλ = v₁t, где 0 ≤ λ ≤ 1, k∈|Ν.
Второй соответственно пробежит lm+lλ = v₂t. m∈|Ν.
Какой смысл этих уравнений: в момент встречи оба бегуна должны встретится в одной точке, которая характеризуется расстоянием до старта
0 ≤ r < l. r ≡ lλ. При этом каждый из них может пробежать разное число целых кругов.
Теперь составим разность этих уравнений и обозначим s = m-k
Тогда, ls = (v₂ - v₁)t, преобразуя получим:
, где s - любое неотрицательное целое число.
Из данного выражения умножая на скорость каждого бегуна можно получить соответствующее расстояние.
Теперь случай, когда они бегут в разные стороны.
Точка встречи по прежнему характеризуется расcтоянием r = λl, причём оно будет измеряться по ходу движения первого бегуна.
Т.е. уравнение для первого будет:
lk + lλ = v₁t
А для второго:
lm + l(1-λ) = v₂t
Сложим их и получим: ,
где d = m+k+1 - любое натуральное число.
Видно, что при d = 1 мы получили обычною формулу для встречного движения.
P.S. Данное решение проведено не совсем формально. Было бы правильнее задать криволинейную ось по стадиону и учитывать знаки скоростей в проекцию на неё, а вместо пути писать координату на ней, но для большей наглядности мы рассматривали модули величин, сразу учитывая, какая скорость больше.