Между краями двух хорошо отшлифованных тонких плоских стеклянных пластинок помещена тонкая проволочка. Противоположные концы пластинок плотно прижаты друг к другу. На верхнюю пластинку нормально к ее поверхности падает монохроматический пучок света длиной волны 400 нм. Определите угол a, который образуют пластинки, если расстояние между наблюдаемыми интерференционными полосами равно 0,4 мм. (cчитать tga→a. ответ представьте в радианах и умножьте на 104
Бо́ровская моде́ль а́тома (Моде́ль Бо́ра) — полуклассическая модель атома, предложенная Нильсом Бором в 1913 г. За основу он взял планетарную модель атома, выдвинутую Резерфордом. Однако, с точки зрения классической электродинамики, электрон в модели Резерфорда, двигаясь вокруг ядра, должен был бы излучать энергию непрерывно и очень быстро и, потеряв её, упасть на ядро. Чтобы преодолеть эту проблему, Бор ввёл допущение, суть которого заключается в том, что электроны в атоме могут двигаться только по определённым (стационарным) орбитам, находясь на которых они не излучают энергию, а излучение или поглощение происходит только в момент перехода с одной орбиты на другую. Причём, стационарными являются лишь те орбиты, при движении по которым момент количества движения электрона равен целому числу постоянных Планка[1]: {\displaystyle m_{e}vr=n\hbar \ } m_{e}vr=n\hbar \ .
Используя это допущение и законы классической механики, а именно равенство силы притяжения электрона со стороны ядра и центробежной силы, действующей на вращающийся электрон, он получил следующие значения для радиуса стационарной орбиты {\displaystyle R_{n}} R_n и энергии {\displaystyle E_{n}} E_{n} находящегося на этой орбите электрона:
{\displaystyle R_{n}=4\pi {\frac {\varepsilon _{0}}{Ze^{2}}}{\frac {n^{2}\hbar ^{2}}{m_{e}}};\quad E_{n}=-{\frac {1}{8\pi }}{\frac {Ze^{2}}{\varepsilon _{0}}}{\frac {1}{R_{n}}};} {\displaystyle R_{n}=4\pi {\frac {\varepsilon _{0}}{Ze^{2}}}{\frac {n^{2}\hbar ^{2}}{m_{e}}};\quad E_{n}=-{\frac {1}{8\pi }}{\frac {Ze^{2}}{\varepsilon _{0}}}{\frac {1}{R_{n}}};}
Здесь {\displaystyle m_{e}} m_e — масса электрона, {\displaystyle Z} Z — количество протонов в ядре, {\displaystyle \varepsilon _{0}} \varepsilon _{0} — электрическая постоянная, {\displaystyle e} e — заряд электрона.
Именно такое выражение для энергии можно получить, применяя уравнение Шрёдингера в задаче о движении электрона в центральном кулоновском поле.
Радиус первой орбиты в атоме водорода R0=5,2917720859(36)⋅10−11 м[2], ныне называется боровским радиусом, либо атомной единицей длины и широко используется в современной физике. Энергия первой орбиты {\displaystyle E_{0}=-13.6} E_{0}=-13.6 эВ представляет собой энергию ионизации атома водорода.
пусть h - максимальная высота подъема при стрельбе вертикально
1) из кинематики имеем: Sy = H = (V(y)^2 - V0(y)^2) / -2g
ясно, что при максимальной высоте подъема конечная скорость V равна нулю:
H = V0(y)^2 / 2g = V0^2 sin^2 α / 2g
2) пренебрегая сопротивлением воздуха, запишем закон сохранения энергии (можно и аналогично первому действию вывести формулу, но так веселее):
m V0^2 / 2 = m g h,
h = V0^2 / 2g
3) видно, что h > H. чтобы узнать, во сколько раз h больше H, разделим первую величину на вторую:
h / H = (V0^2 / 2g) * (2g / V0^2 sin^2 α) = 1 / sin^2 α = 4 / 2 = 2.