N ≈ 1.57·10²³
Объяснение:
T = 315 K
<v> = 320 м/c
m = 20 г = 0,02 кг
Na = 6.022·10²³ 1/моль - постоянная Авогадро
R = 8.31 Дж/(моль·К) - универсальная газовая постоянная
N - ?
По закону Клапейрона-Менделеева
pV = νRT
(р - давление, V - объём, ν - количество вещества)
ν = N/Na
pV = NRT/Na (1)
Будем считать газ идеальным и одноатомным, тогда давление газа р можно вычислить как
р = nm₀<v>²/3 (n - концентрация, m₀ - масса молекулы)
n = N/V; m₀ = m/N
Тогда
nm₀ = m/V
р = m<v>²/3V
и
pV = m<v>²/3 (2)
Приравняем правые части уравнений (1) и (2)
NRT/Na = m<v>²/3
и выразим отсюда N
N = m<v>²Na/3RT
N = 0.02 · 320² · 6.022·10²³ : (3 · 8.31 · 315)
Данный тип задач решается следующим образом:
Левый и правый "треугольники" заменяем соединениями в "звезду".
(См. получившуюся схему).
Сопротивление первой, верхней ветви:
R₁ = R/3 + R + R/3 = 5·R / 3
Сопротивление параллельной ей ветви:
R₂ = R/3 + R/3 = 2·R / 3
Далее находим сопротивление этих двух ветвей:
R₁₂ = R₁·R₂ / (R₁+R₂) = 10·R / 21
И, наконец, общее сопротивление цепи:
Rобщ = R/3 + 10·R/21 + R/3 = 8·R/7
Учтем, что R = 35 Ом, получаем:
R общ = 8·35 / 7 = 40 Ом.
Решение задачи упростил тот факт, что сопротивления исходной цепи были одинаковыми.
N ≈ 1.57·10²³
Объяснение:
T = 315 K
<v> = 320 м/c
m = 20 г = 0,02 кг
Na = 6.022·10²³ 1/моль - постоянная Авогадро
R = 8.31 Дж/(моль·К) - универсальная газовая постоянная
N - ?
По закону Клапейрона-Менделеева
pV = νRT
(р - давление, V - объём, ν - количество вещества)
ν = N/Na
pV = NRT/Na (1)
Будем считать газ идеальным и одноатомным, тогда давление газа р можно вычислить как
р = nm₀<v>²/3 (n - концентрация, m₀ - масса молекулы)
n = N/V; m₀ = m/N
Тогда
nm₀ = m/V
р = m<v>²/3V
и
pV = m<v>²/3 (2)
Приравняем правые части уравнений (1) и (2)
NRT/Na = m<v>²/3
и выразим отсюда N
N = m<v>²Na/3RT
N = 0.02 · 320² · 6.022·10²³ : (3 · 8.31 · 315)
N ≈ 1.57·10²³
Объяснение:
Данный тип задач решается следующим образом:
Левый и правый "треугольники" заменяем соединениями в "звезду".
(См. получившуюся схему).
Сопротивление первой, верхней ветви:
R₁ = R/3 + R + R/3 = 5·R / 3
Сопротивление параллельной ей ветви:
R₂ = R/3 + R/3 = 2·R / 3
Далее находим сопротивление этих двух ветвей:
R₁₂ = R₁·R₂ / (R₁+R₂) = 10·R / 21
И, наконец, общее сопротивление цепи:
Rобщ = R/3 + 10·R/21 + R/3 = 8·R/7
Учтем, что R = 35 Ом, получаем:
R общ = 8·35 / 7 = 40 Ом.
Решение задачи упростил тот факт, что сопротивления исходной цепи были одинаковыми.