Могут ли, если да, то при каких значениях температуры (высоких или низких) протекать реакции, отображаемые следующими уравнениями. не производя вычислений, определите знак энергии гиббса. обоснуйте ваш ответ. j2(тв)+5cl2(г) +6н2о(ж) → 2hjo3(р-р)+ 10нсl(р-р), δн < 0
Теперь нам надо записать 2 закон Ньютона в векторном виде: →
→ → → → →
Fтяг+Fтр+mg+N=ma, теперь нам надо найти проекции этих сил на координатные оси ОХ: Fтяг-Fтр - mg sinα=ma (сила трения имеет отрицательную проекцию, тк. она направлена "против" оси ОХ, mg отрицательна т.к. идем от начала проекции к концу против направления оси, а если опустить перпендикуляр из конца вектора на ОХ то получим, что угол 30 будет лежать напротив проекции, т.е сам вектор при этом будет равен mg sinα)
Теперь аналогично находим проекции всех векторов на ОУ: 0+0-mg cosα+N=0 отсюда находим, что N=mg cosα, вспоминаем, что Fтр=μN=μ mg cosα, осталось все собрать в кучу, получаем: Fтяг- μ mg cosα - mg sinα=ma отсюда a=(Fтяг -μ mg cosα -mg sinα)/m=(7000-0,1*1000*10*√3/2 - 1000*10*1/2)/1000=(6150-5000)/1000=1150/1000=1,15 м/с.кв.
V=54 км/ч=54000 м/3600c=15м/с
U=72 км/ч=72000 м/3600c=20м/с
квадрат расстояния между автомобилями вычисляем по формуле Пифагора
d²=(L-Vt)²+(L-Ut)²
найдем производную от d²
(d²)'=2(L-Vt)(-V)+2(L-Ut)(-U)
минимальное d² (и соответственно минимальное d) будет в момент времени t, когда (d²)'=0
2(L-Vt)(-V)+2(L-Ut)(-U)=0
V(L-Vt)+U(L-Ut)=0
VL-V²t+UL-U²t=0
L(V+U)=t(V²+U²)
t=450м *(15 м/c+20 м/c)/(15² м²/с²+20² м²/с²)=450 м/(225+400)м/с=25,2с
подставляем это значение t в формулу для d²
d²=(450м-15м/с * 25,2с)²+(450м-20м/с * 25,2с)²=8100 м²
d=90,0м