Площадь сечения равна: S=πR^2 R=0.6 м => S=3.14*(0.6)^2=1.13 м^2 Найдём массу воды в трубе: m=S*h*p Здесь h-длина трубы m=1.13*150*1000=169500 кг Далее закон сохранения энергии: Ek1+Ep1=Ek2+Ep2 В начале скорость нулевая, в конце он достигает нужной высоты т.е. уже нулевой. И так получается: Ep1=Ek2 m*g*h/2=m*v^2/2 здесь h- перепад высоты. h/2-это потому, что Ep- связанно с движением центра масс После сокращений получаем: v=√gh = √10*19=13.8 м/с Энергия, которую можно получить равна: Ep=mgh/2=16102500 Дж Переводим в кВт-ч, получается Ep≈4,473 кВт-ч или Ep=16102.5 кВт-с
По условию m=const. Тогда можно воспользоваться законом Клапейрона:
Воспользуемся правилом пропорции:
Отсюда можем выразить конечный объем V2:
м^3
2.
Задача в плане решения аналогична первой. Также воспользовавшись законом Клапейрона, получаем уравнение:
Откуда выражаем искомую величину P2:
Па
3.
Довольно долго ломал над ней голову. Так и не догадался, как посчитать температуру газа внутри шара, если известна температура воды, в которую он погружен... Причем по условию и не ясно: шар именно погрузили на некоторую глубину, или оставили некоторую часть его объема снаружи? В первом случае бы действовало давление P = p g h, во втором - Архимедова сила Fa = p g V. Ни высоты, ни объема не дано, и потому, когда я пытаюсь посчитать температуру без них, я выношу себе мозг. Поэтому будем считать, что за счет теплообмена с водой газ внутри шара имеет такую же температуру. Тогда по тому же закону Клапейрона приходим к уравнению:
Выражаем нужный нам объем в воде V2:
Теперь нужно посчитать изменение объема. Для этого вычтем из конечного значения начальное:
ответ в метрах кубических, разумеется.
4.
Массу воздуха в первом и втором случае удобно выразить через закон Менделеева-Клапейрона:
Получим общую формулу для массы (применительно для наших случаев в ней будет меняться только температура, так как, очевидно, объем комнаты не меняется, молярная масса воздуха - тоже, давление - тоже (давление берем атмосферное)):
Как я и сказал выше - одинаковое в формулах масс давление, объем, молярная масса и, при том, универсальная газовая постоянная R. Вынесем их за скобки и посчитаем изменение массы:
R=0.6 м => S=3.14*(0.6)^2=1.13 м^2
Найдём массу воды в трубе: m=S*h*p
Здесь h-длина трубы
m=1.13*150*1000=169500 кг
Далее закон сохранения энергии:
Ek1+Ep1=Ek2+Ep2
В начале скорость нулевая, в конце он достигает нужной высоты т.е. уже нулевой. И так получается:
Ep1=Ek2
m*g*h/2=m*v^2/2
здесь h- перепад высоты.
h/2-это потому, что Ep- связанно с движением центра масс
После сокращений получаем: v=√gh = √10*19=13.8 м/с
Энергия, которую можно получить равна: Ep=mgh/2=16102500 Дж
Переводим в кВт-ч, получается Ep≈4,473 кВт-ч или Ep=16102.5 кВт-с
По условию m=const. Тогда можно воспользоваться законом Клапейрона:
Воспользуемся правилом пропорции:
Отсюда можем выразить конечный объем V2:
м^3
2.
Задача в плане решения аналогична первой. Также воспользовавшись законом Клапейрона, получаем уравнение:
Откуда выражаем искомую величину P2:
Па
3.
Довольно долго ломал над ней голову. Так и не догадался, как посчитать температуру газа внутри шара, если известна температура воды, в которую он погружен... Причем по условию и не ясно: шар именно погрузили на некоторую глубину, или оставили некоторую часть его объема снаружи? В первом случае бы действовало давление P = p g h, во втором - Архимедова сила Fa = p g V. Ни высоты, ни объема не дано, и потому, когда я пытаюсь посчитать температуру без них, я выношу себе мозг. Поэтому будем считать, что за счет теплообмена с водой газ внутри шара имеет такую же температуру. Тогда по тому же закону Клапейрона приходим к уравнению:
Выражаем нужный нам объем в воде V2:
Теперь нужно посчитать изменение объема. Для этого вычтем из конечного значения начальное:
ответ в метрах кубических, разумеется.
4.
Массу воздуха в первом и втором случае удобно выразить через закон Менделеева-Клапейрона:
Получим общую формулу для массы (применительно для наших случаев в ней будет меняться только температура, так как, очевидно, объем комнаты не меняется, молярная масса воздуха - тоже, давление - тоже (давление берем атмосферное)):
Как я и сказал выше - одинаковое в формулах масс давление, объем, молярная масса и, при том, универсальная газовая постоянная R. Вынесем их за скобки и посчитаем изменение массы:
ответ, разумеется, в килограммах.