Мяч брошен с балкона под углом к горизонту на максимальную дальность. Модуль перемещения мяча за время полёта в два раза больше высоты точки старта. Какой угол `varphi` вектор скорости камня образует с вертикалью в момент падения на землю? Ускорение свободного падения `g`.
Сначала определим скорость неразорвавшегося снаряда на высоте 10м.
h=(v^2 - v0^2) / -2g. v=кор. кв. из v0^2 - 2gh. v=14м/c.
Теперь скорость первого в момент разрыва: h=v01*t1 +g*t1^2 /2. ( t1=1c).
v01=h/t1 -gt1/2. v01=5м/c.
По закону сохранения импульса, определим скорость 2 осколка в момент разрыва: m*v=m*v02 / 2 - m*v01 / 2, сократим на массу m,
v02=2v +v01. v02=33м/с. Теперь определим высоту подъема вверх 2 осколка:
h1=v02^2 / 2g. h1=54,45м. и время его движения вверх: h1=g*t2^2 / 2.
t2=кор. кв. из 2h1 / g. t2=3,3c.
Высота с которой он падал вниз h2=h+h1. h2=10+54,45=64,45м. Вычислим время падения h2=g*t3^2/2, t3=кор. кв. из 2h2/g. t3=3,6c. Все время t4=t3+t2=3,6+3,3=6,9c
( чертеж сделать чтобы не напутать со знаками импульсов, хотя можно и высоту показать, нагляднее будет)
для второго тела x2=v0t+0.5at^2;
Скорость первого тела равна: v1=x1'=-v0+at1; В момент остановки она равна нулю: v0=at1; Отсюда t1=v0/a;
Находим расстояния, пройденные телами за это время t1;
x1=-v0*v0/a+0.5a*v0^2/a^2;
x1=-v0^2/a+0.5v0^2/a;
x1=-0.5v0^2/a; (нас интересует отношение расстояний, поэтому берём модуль числа) x1=0.5v0^2/a;
x2=v0*v0/a+0.5a*v0^2/a^2;
x2=1.5v0^2/a;
x2/x1=(1.5v0^2/a)/(0.5v0^2/a);
x2/x1=3. Второе тело путь в три раза больше, чем первое.