На блок в виде сплошного диска массой и радиусом R намотана нить, к концу которой подвешен груз массой m0. Найдите линейное ускорение, с которым движется груз m0.Трение в оси блока отсутствует, нить невесома
Мощность P = 6 Вт, площадь пластины S = 10 см², коэффициент отражения R = 0.6
Пусть за время Δt на пластину упали N фотонов, общая энергия всех фотонов E = P Δt, энергия каждого фотона (в предположении, что свет монохроматический) e = E/N = P Δt/N. Импульс каждого налетающего фотона равен п = e/c. Посчитаем, какой импульс налетающие фотоны передали пластине. - Отражённые фотоны (их было RN) передают пластине импульс Δп = 2п - Поглощённые фотоны (их было (1-R)N) передают платине импульс Δп = п Суммарно за время Δt пластине будет передан импульс ΔП = RN * 2п + (1-R)N * п = пN * (2R + 1 - R) = (1 + R) пN = (1 + R) (P/c) Δt
Сила F, действующая на пластину, по второму закону Ньютона F = ΔП / Δt = (1 + R) * P/c
Давление - сила, отнесённая к площади: p = F/S = (1 + R) * P / cS = 1.6 * 6 / (3*10^8 * 10*10^-4) = 3.2*10^-5 Па = 32 мкПа
1) То, что планеты окажутся на одном радиусе, означает, что у них будут одинаковые углы в момент встречи.
Планеты движутся в одном направлении - значит относительная угловая скорость будет равна модулю разности их угловых скоростей.
То есть ωотн = ω2 - ω1.
2) Планеты в начальный момент уже находились на одном радиусе, значит для момента "встречи" одна планета относительно другой совершила полный оборот, то есть угол в 360° или 2π радиан.
3) Чтобы найти время, нужно угол поворота разделить на угловую скорость - в данном случае обе величины относительны.
Слово "минимальное" употреблено, потому что очевидно что планеты ещё не раз окажутся на одном радиусе, поэтому в общем случае в числителе дроби должно было быть натуральное число n - номер "встречи" планет.
Угловые скорости даны по условию, значит это конечная формула. Не понимаю как можно угловую скорость измерять в годах.
Пусть за время Δt на пластину упали N фотонов, общая энергия всех фотонов E = P Δt, энергия каждого фотона (в предположении, что свет монохроматический) e = E/N = P Δt/N. Импульс каждого налетающего фотона равен п = e/c. Посчитаем, какой импульс налетающие фотоны передали пластине.
- Отражённые фотоны (их было RN) передают пластине импульс Δп = 2п
- Поглощённые фотоны (их было (1-R)N) передают платине импульс Δп = п
Суммарно за время Δt пластине будет передан импульс ΔП = RN * 2п + (1-R)N * п = пN * (2R + 1 - R) = (1 + R) пN = (1 + R) (P/c) Δt
Сила F, действующая на пластину, по второму закону Ньютона
F = ΔП / Δt = (1 + R) * P/c
Давление - сила, отнесённая к площади:
p = F/S = (1 + R) * P / cS = 1.6 * 6 / (3*10^8 * 10*10^-4) = 3.2*10^-5 Па = 32 мкПа
ответ. p = 32 мкПа
1) То, что планеты окажутся на одном радиусе, означает, что у них будут одинаковые углы в момент встречи.
Планеты движутся в одном направлении - значит относительная угловая скорость будет равна модулю разности их угловых скоростей.
То есть ωотн = ω2 - ω1.
2) Планеты в начальный момент уже находились на одном радиусе, значит для момента "встречи" одна планета относительно другой совершила полный оборот, то есть угол в 360° или 2π радиан.
3) Чтобы найти время, нужно угол поворота разделить на угловую скорость - в данном случае обе величины относительны.
Слово "минимальное" употреблено, потому что очевидно что планеты ещё не раз окажутся на одном радиусе, поэтому в общем случае в числителе дроби должно было быть натуральное число n - номер "встречи" планет.
Угловые скорости даны по условию, значит это конечная формула. Не понимаю как можно угловую скорость измерять в годах.