Если равноплечие весы будут находиться в равновесии, значит на левую и правую чаши весов действуют одинаковые по величине силы, то есть верно следующее равенство (смотрите схему): mg — {f_{а1}} = mg — {f_{а2}} распишем силы архимеда f_{а1} и f_{а2} в левой и правой части равенства по известной формуле: mg — {\rho _в}g{v_1} = mg — {\rho _в}g{v_2} m — {\rho _в}{v_1} = m — {\rho _в}{v_2} неизвестный объем v_2 можно выразить из массы m и плотности \rho по формуле: {v_2} = \frac{m}{\rho } m — {\rho _в}{v_1} = m — {\rho _в}\frac{m}{\rho } m — {\rho _в}{v_1} = \frac{{m\left( {\rho — {\rho _в}} \right)}}{\rho } выразим неизвестную массу гирь m: m = \frac{{\rho \left( {m — {\rho _в}{v_1}} \right)}}{{\rho — {\rho _в}}} переведем плотности и объем тела в систему си: 1\; г/см^3 = 1000\; кг/м^3 7\; г/см^3 = 7000\; кг/м^3 100\; см^3 = {10^{ — 4}}\; м^3 посчитаем численный ответ к : m = \frac{{7000 \cdot \left( {1 — 1000 \cdot {{10}^{ — 4}}} \right)}}{{7000 — 1000}} = 1,05\; кг ответ 1,05кг
P = n k M V^2 / 3R => n = 3 R P / k M V^2 = 3*8,31*10^4 / 1,38*10^-23*2*10^-3*64*10^4=24,93*10^4 / 176,64*10^-22 = 0,141*10^26 мол-л/м^3
2. n = N / V; N = m / m0; m0 = M / Na
n = p Na / M = 0,13*6*10^23 / 32*10^-3 = 0,0243*10^26 мол-л/м^3
3. Ek=3/2 * k T; V^2= 3RT / M => T = M V^2 / 3R
Ek = 1,5 k M V^2 / 3R = 1,5*1,38*10^-23*32*10^-3*25*10^4 / 3*8,31 = 1656*10^-22 / 24,93 = 66,425*10^-22 Дж
4. P = 2/3 * Ek n = 2*5*10^-23*16*10^25 / 3 = 53,3*10^2 Па