На даний момент часу в радіоактивному зразку міститься 2*10^‐¹⁰ моль радію. Скільки ядер Радію розпадеться наступної секунди? Стала радіоактивного розпаду Радію дорівнює "лямбда" = 1,37*10^‐¹¹ с‐¹
1) Заметим, что какая бы ни была цепочка, если сопротивления всех ее звеньев увеличить вдвое, ее эквивалентное сопротивление также возрастет вдвое.
Заметим что наша цепочка это резистор r, резистор r и паралелльно к нему присоединенная такая же бесконечная цепочка, но с удвоенным сопротивлением, и еще резистор r
Поэтому
2) Обозначим ток, ушедший в первый горизонтальный резистор как A1, а ток ушедший в первый вертикальный резистор как B1, во второй горизонтальный A2, во второй вертикальный B2 и т д. Для любого звена с номером n имеем два правила Кирхгофа
Отсюда
Пусть полный ток I в первом звене разделился как
Посчитаем несколько первых звеньев по полученному правилу
Заметим что коэффициенты при k в скобках и свободные члены это все числа Фибоначчи! Причем множитель при k это число Фибоначчи с номером на 2 большим, чем соответствующий свободный член.
При стремлении n к бесконечности, отношение коэффициента при k и свободного члена стремится (как отношение двух чисел Фибоначчи с номерами n и n+2) к Ф^2, где число Ф = (1+√5)/2 - золотое сечение. Если k не будет равен 1/Ф^2, мы получим в итоге неограниченный рост токов при стремлении n к бесконечности, чего не может быть. Для компенсации растущих чисел Фибоначчи мы понимаем что k может быть только равен 1/Ф^2.
Теперь вспомним про два крайних резистора и посчитаем перепад напряжения от A к B идя по самому нижнему контуру (по последнему вертикальному резистору течет нулевой ток)
1) Заметим, что какая бы ни была цепочка, если сопротивления всех ее звеньев увеличить вдвое, ее эквивалентное сопротивление также возрастет вдвое.
Заметим что наша цепочка это резистор r, резистор r и паралелльно к нему присоединенная такая же бесконечная цепочка, но с удвоенным сопротивлением, и еще резистор r
Поэтому
2) Обозначим ток, ушедший в первый горизонтальный резистор как A1, а ток ушедший в первый вертикальный резистор как B1, во второй горизонтальный A2, во второй вертикальный B2 и т д. Для любого звена с номером n имеем два правила Кирхгофа
Отсюда
Посчитаем несколько первых звеньев по полученному правилу
Заметим что коэффициенты при k в скобках и свободные члены это все числа Фибоначчи! Причем множитель при k это число Фибоначчи с номером на 2 большим, чем соответствующий свободный член.
При стремлении n к бесконечности, отношение коэффициента при k и свободного члена стремится (как отношение двух чисел Фибоначчи с номерами n и n+2) к Ф^2, где число Ф = (1+√5)/2 - золотое сечение. Если k не будет равен 1/Ф^2, мы получим в итоге неограниченный рост токов при стремлении n к бесконечности, чего не может быть. Для компенсации растущих чисел Фибоначчи мы понимаем что k может быть только равен 1/Ф^2.
Теперь вспомним про два крайних резистора и посчитаем перепад напряжения от A к B идя по нижнему контуру. Заметим, что по последнему вертикальному резистору равен полному току I, так как через бесконечную горизонтальную цепочку к "последнему" резистору ничего не притечет, и все будет течь по нижнему контуру. Полный ток течет также через самые крайние резисторы. Поэтому
1) Заметим, что какая бы ни была цепочка, если сопротивления всех ее звеньев увеличить вдвое, ее эквивалентное сопротивление также возрастет вдвое.
Заметим что наша цепочка это резистор r, резистор r и паралелльно к нему присоединенная такая же бесконечная цепочка, но с удвоенным сопротивлением, и еще резистор r
Поэтому
2) Обозначим ток, ушедший в первый горизонтальный резистор как A1, а ток ушедший в первый вертикальный резистор как B1, во второй горизонтальный A2, во второй вертикальный B2 и т д. Для любого звена с номером n имеем два правила Кирхгофа
Отсюда
Пусть полный ток I в первом звене разделился как
Посчитаем несколько первых звеньев по полученному правилу
Заметим что коэффициенты при k в скобках и свободные члены это все числа Фибоначчи! Причем множитель при k это число Фибоначчи с номером на 2 большим, чем соответствующий свободный член.
При стремлении n к бесконечности, отношение коэффициента при k и свободного члена стремится (как отношение двух чисел Фибоначчи с номерами n и n+2) к Ф^2, где число Ф = (1+√5)/2 - золотое сечение. Если k не будет равен 1/Ф^2, мы получим в итоге неограниченный рост токов при стремлении n к бесконечности, чего не может быть. Для компенсации растущих чисел Фибоначчи мы понимаем что k может быть только равен 1/Ф^2.
Теперь вспомним про два крайних резистора и посчитаем перепад напряжения от A к B идя по самому нижнему контуру (по последнему вертикальному резистору течет нулевой ток)
Где φ = 1/Ф = (1-√5)/2 ≈0.618
Досчитаем до числа
1) Заметим, что какая бы ни была цепочка, если сопротивления всех ее звеньев увеличить вдвое, ее эквивалентное сопротивление также возрастет вдвое.
Заметим что наша цепочка это резистор r, резистор r и паралелльно к нему присоединенная такая же бесконечная цепочка, но с удвоенным сопротивлением, и еще резистор r
Поэтому
2) Обозначим ток, ушедший в первый горизонтальный резистор как A1, а ток ушедший в первый вертикальный резистор как B1, во второй горизонтальный A2, во второй вертикальный B2 и т д. Для любого звена с номером n имеем два правила Кирхгофа
Отсюда
Посчитаем несколько первых звеньев по полученному правилу
Заметим что коэффициенты при k в скобках и свободные члены это все числа Фибоначчи! Причем множитель при k это число Фибоначчи с номером на 2 большим, чем соответствующий свободный член.
При стремлении n к бесконечности, отношение коэффициента при k и свободного члена стремится (как отношение двух чисел Фибоначчи с номерами n и n+2) к Ф^2, где число Ф = (1+√5)/2 - золотое сечение. Если k не будет равен 1/Ф^2, мы получим в итоге неограниченный рост токов при стремлении n к бесконечности, чего не может быть. Для компенсации растущих чисел Фибоначчи мы понимаем что k может быть только равен 1/Ф^2.
Теперь вспомним про два крайних резистора и посчитаем перепад напряжения от A к B идя по нижнему контуру. Заметим, что по последнему вертикальному резистору равен полному току I, так как через бесконечную горизонтальную цепочку к "последнему" резистору ничего не притечет, и все будет течь по нижнему контуру. Полный ток течет также через самые крайние резисторы. Поэтому