На горизонтальной плоскости находятся две тонкостенные трубы радиуса r каждая, оси которых параллельны. вначале одна из труб, имеющая массу m, покоится, а вторая, имеющая массу 2m, катится без проскальзывания по направлению к первой со скоростью поступательного движения v. считая столкновение труб абсолютно , найдите зависимость от времени скоростей поступательного и вращательного движений второй трубы. нарисуйте графики этих зависимостей. коэффициент трения скольжения труб о горизонтальную поверхность равен k. трением между трубами при столкновении пренебречь. какая часть кинетической энергии, оставшейся у второй трубы после удара, перешла в тепло при её последующем движении?
где v1 и v2 — скорости поступательного движения соответственно первой и второй труб после соударения.Решая эти уравнения совместно, найдем, что v1 = 0 и v2 = vo, то есть при соударении трубы обмениваются скоростями поступательного движения — точно так же, как при соударении двух одинаковых шаров.Рассмотрим теперь, что будет происходить с первой, первоначально двигавшейся трубой после удара. В системе координат, связанной с осью трубы, катящейся без проскальзывания по плоскости со скоростью vo. Это означает, что такая труба вращается вокруг своей оси так, что линейная скорость вращения точек ее поверхности равна по величине скорости поступательного движения оси трубы. Поэтому первая труба после столкновения вращается вокруг своей оси с угловой скоростью w = vo/R.
Сила трения Fтр = kmg, действующая на эту трубу, замедляет ее вращение и одновременно сообщает ей ускорение
в направлении первоначального движения трубы. К моменту t эта труба будет иметь скорость поступательного движения
и будет вращаться вокруг своей оси с угловой скоростью
Скорость поступательного движения трубы увеличивается, а скорость вращения трубы уменьшается пропорционально времени. К моментуto, когда скорость поступательного движения оси трубы станет равна линейной скорости вращения трубы вокруг оси, проскальзывание трубы относительно плоскости прекратится, и после этого ни скорость вращения трубы w1', ни скорость поступательного движения оси трубы u1' уже не будут меняться. Из условия
К моменту t = vo/2kg проскальзывание трубы относительно плоскости прекратится. В этот момент труба будет иметь не меняющиеся в дальнейшем скорость поступательного движения u2 = vo/2 и угловую скорость вращения вокруг оси w2 = vo/2R.