Рассмотрим два одинаковых жестких равнобедренных прямоугольных треугольника, которые лежат в одной плоскости и не могут пересекаться. Пусть в некоторой инерциальной системе отсчета (далее ИСО) S1 (X′Y′) нижний треугольник покоится (его катеты параллельны осям координат), а верхний скользит по нему со скоростью V (рис. 1а). На рисунке показано взаимное положение треугольников, когда их левые верхние углы совпадают, т.е. находятся в одной и той же временной точке А. Размеры верхнего треугольника меньше в направлении своей скорости вследствие Лоренцева сокращения длины.
Рис. 1. Положение жестких прямоугольных треугольников, когда их левые верхние углы находятся в одной и той же временной точке А.
а – нижний треугольник покоится, а верхний скользит по нему со скоростью V;
б – то же состояние движения треугольников, как и на рисунке (а), но в ИСО, движущейся вправо со скоростью Vx.
Перейдем в ИСО S2 (XY), движущуюся вдоль оси X′ (оси X′ и X совпадают) с такой скоростью Vx, что в S2 скорость Vy верхнего треугольника (рассчитанная в соответствии с релятивистским правилом сложения скоростей [2 с.75; 3 с.259; 4 с.28; 5 с.89]) параллельна оси Y. Скорость нижнего треугольника в S2 будет параллельна оси X и равна –Vx (рис. 1б). Совмещение левых верхних углов треугольников (точка А) является одноместным и одновременным временным событием, поэтому будет таковым в любой ИСО [4 с.18; 5 с.58], это прямо следует из инвариантности временного интервала. На рис. 1б показано взаимное положение треугольников в S2 в момент времени, соответствующий событию А (по часам S2). Вследствие Лоренцева сокращения оба треугольника уменьшены в размерах, каждый в направлении собственной скорости – верхний треугольник по оси Y, а нижний по оси X, и их левые верхние углы совпадают в точке А.
Очевидно, что для наблюдателя в S2 правые нижние углы треугольников не могут находиться в одной временной точке (совмещаться) ни в ни в будущем по отношению к событию А (в противном случае треугольники будут пересекаться, что невозможно, т.к. они представляют собой твердые тела). Однако для наблюдателя в S1 совпадение правых нижних углов треугольников неизбежно. Получаем, что одно и то же событие в одной ИСО происходит, а в другой нет.
Корпускулярно-волновой дуализм (или квантово-волновой дуализм) — свойство природы, состоящее в том, что материальные микроскопические объекты могут при одних условиях проявлять свойства классических волн, а при других — свойства классических частиц.
Типичные примеры объектов, проявляющих двойственное корпускулярно-волновое поведение — электроны и свет; принцип справедлив и для более крупных объектов, но, как правило, чем объект массивнее, тем в меньшей степени проявляются его волновые свойства[4] (речь здесь не идёт о коллективном волновом поведении многих частиц, например, волны на поверхности жидкости).
Идея о корпускулярно-волновом дуализме была использована при разработке квантовой механики для интерпретации явлений, наблюдаемых в микромире, с точки зрения классических концепций. В действительности квантовые объекты не являются ни классическими волнами, ни классическими частицами, проявляя свойства первых или вторых лишь в зависимости от условий экспериментов, которые над ними проводятся. Корпускулярно-волновой дуализм необъясним в рамках классической физики и может быть истолкован лишь в квантовой механике[5].
Дальнейшим развитием представлений о корпускулярно-волновом дуализме стала концепция квантованных полей в квантовой теории поля.
Объяснение:
Мир квантовой физики трудно понять с точки зрения здравого смысла. Материя может быть одновременно сконцентрирована в одной точке и размазана в Тому и другому имеются экспериментальные доказательства, но есть свидетельства ещё более загадочных явлений.
Корпускулярно-волновой дуализм
Фотон обладает одновременно свойствами частицы и волны. Это явление обозначается термином «корпускулярно-волновой дуализм». Великий Исаак Ньютон считал, что свет является потоком частиц, но уже его современник Христиан Гюйгенс находил у света волновые свойства. Борьба двух теорий продолжалась практически до ХХ века, когда выяснилось, что они обе справедливы.
Эксперимент Юнга
Чтобы доказать волновую природу света в 1803 году английский учёный Томас Юнг провёл свой знаменитый эксперимент с двумя щелями. На самом деле щелей было три. Свет от источника направляется на щель, прорезанную в металлическом листе, и таким образом, из него вырезается один узкий луч. Это нужно для того, чтобы создать два когерентных источника излучения. В другом таком же листе, прорезаются две параллельные щели с ровными краями. Ширина щелей сравнима с длиной световой волны. Перпендикулярно плоскости второго листа на них посылается расходящийся конус света от первой щели.
Противоречивость Лоренцева сокращения длины
Объяснение:
Рассмотрим два одинаковых жестких равнобедренных прямоугольных треугольника, которые лежат в одной плоскости и не могут пересекаться. Пусть в некоторой инерциальной системе отсчета (далее ИСО) S1 (X′Y′) нижний треугольник покоится (его катеты параллельны осям координат), а верхний скользит по нему со скоростью V (рис. 1а). На рисунке показано взаимное положение треугольников, когда их левые верхние углы совпадают, т.е. находятся в одной и той же временной точке А. Размеры верхнего треугольника меньше в направлении своей скорости вследствие Лоренцева сокращения длины.
Рис. 1. Положение жестких прямоугольных треугольников, когда их левые верхние углы находятся в одной и той же временной точке А.
а – нижний треугольник покоится, а верхний скользит по нему со скоростью V;
б – то же состояние движения треугольников, как и на рисунке (а), но в ИСО, движущейся вправо со скоростью Vx.
Перейдем в ИСО S2 (XY), движущуюся вдоль оси X′ (оси X′ и X совпадают) с такой скоростью Vx, что в S2 скорость Vy верхнего треугольника (рассчитанная в соответствии с релятивистским правилом сложения скоростей [2 с.75; 3 с.259; 4 с.28; 5 с.89]) параллельна оси Y. Скорость нижнего треугольника в S2 будет параллельна оси X и равна –Vx (рис. 1б). Совмещение левых верхних углов треугольников (точка А) является одноместным и одновременным временным событием, поэтому будет таковым в любой ИСО [4 с.18; 5 с.58], это прямо следует из инвариантности временного интервала. На рис. 1б показано взаимное положение треугольников в S2 в момент времени, соответствующий событию А (по часам S2). Вследствие Лоренцева сокращения оба треугольника уменьшены в размерах, каждый в направлении собственной скорости – верхний треугольник по оси Y, а нижний по оси X, и их левые верхние углы совпадают в точке А.
Очевидно, что для наблюдателя в S2 правые нижние углы треугольников не могут находиться в одной временной точке (совмещаться) ни в ни в будущем по отношению к событию А (в противном случае треугольники будут пересекаться, что невозможно, т.к. они представляют собой твердые тела). Однако для наблюдателя в S1 совпадение правых нижних углов треугольников неизбежно. Получаем, что одно и то же событие в одной ИСО происходит, а в другой нет.
Корпускулярно-волновой дуализм (или квантово-волновой дуализм) — свойство природы, состоящее в том, что материальные микроскопические объекты могут при одних условиях проявлять свойства классических волн, а при других — свойства классических частиц.
Типичные примеры объектов, проявляющих двойственное корпускулярно-волновое поведение — электроны и свет; принцип справедлив и для более крупных объектов, но, как правило, чем объект массивнее, тем в меньшей степени проявляются его волновые свойства[4] (речь здесь не идёт о коллективном волновом поведении многих частиц, например, волны на поверхности жидкости).
Идея о корпускулярно-волновом дуализме была использована при разработке квантовой механики для интерпретации явлений, наблюдаемых в микромире, с точки зрения классических концепций. В действительности квантовые объекты не являются ни классическими волнами, ни классическими частицами, проявляя свойства первых или вторых лишь в зависимости от условий экспериментов, которые над ними проводятся. Корпускулярно-волновой дуализм необъясним в рамках классической физики и может быть истолкован лишь в квантовой механике[5].
Дальнейшим развитием представлений о корпускулярно-волновом дуализме стала концепция квантованных полей в квантовой теории поля.
Объяснение:
Мир квантовой физики трудно понять с точки зрения здравого смысла. Материя может быть одновременно сконцентрирована в одной точке и размазана в Тому и другому имеются экспериментальные доказательства, но есть свидетельства ещё более загадочных явлений.
Корпускулярно-волновой дуализм
Фотон обладает одновременно свойствами частицы и волны. Это явление обозначается термином «корпускулярно-волновой дуализм». Великий Исаак Ньютон считал, что свет является потоком частиц, но уже его современник Христиан Гюйгенс находил у света волновые свойства. Борьба двух теорий продолжалась практически до ХХ века, когда выяснилось, что они обе справедливы.
Эксперимент Юнга
Чтобы доказать волновую природу света в 1803 году английский учёный Томас Юнг провёл свой знаменитый эксперимент с двумя щелями. На самом деле щелей было три. Свет от источника направляется на щель, прорезанную в металлическом листе, и таким образом, из него вырезается один узкий луч. Это нужно для того, чтобы создать два когерентных источника излучения. В другом таком же листе, прорезаются две параллельные щели с ровными краями. Ширина щелей сравнима с длиной световой волны. Перпендикулярно плоскости второго листа на них посылается расходящийся конус света от первой щели.