Штатная скорость км/ч м/с м/с м/с. Интервал движения Время посадки высадки Время торможения до остановки Тормозной путь м . Длина состава м .
Найти: дистанцию между составами в [м] и [мм].
Р е ш е н и е :
Все положения, упоминаемые в доказательстве решения, отмечены на приложенном к решению рисунке.
Искомая дистанция между поездами – это свободное пространство вдоль железнодорожного полотна. Таким образом – дистанция в данном случае – это расстояние от ведущего вагона (начала) заднего Скоростного состава (положение С) до Конца припаркованного состава (положение К) в тот момент, когда припаркованный собирается отправляться.
Нам неизвестно, является ли торможение составов перед остановкой равнозамедленным или нет, и нам это знать и не нужно (!), поскольку нам дано и время, и скорость, и тормозной путь. Всё, что нам нужно – это корректно учесть все слагаемые времени и пути при торможении.
Общий интервал движения составляет и это означает, что каждые секунд, в положении Н оказывается Начало очередного состава. Уже припаркованный состав простоял на станции а это означает, что следующему за ним составу осталось проехать из положения С (начало скоростного состава) до точки Н (начало припаркованного состава) в течение секунд.
Искомая дистанция между составами, как мы уже говорили выше, измеряется не от положения С до положения Н, а от положения С до положения К (конец припаркованного состава). Однако нам будет удобно найти весь остаточный путь СН (между положениями С и Н), а затем вычесть из него длину КН (между положениями К и Н), равную длине состава м.
Из секунд, оставшихся идущему следом составу, первые секунд он будет идти с постоянной скоростью м/с из положения С в положение О, а последующие секунд он будет останавливаться из положения О до положения Н.
Длину отрезка ОН мы и так знаем, это тормозной путь м . Теперь найдём СО, т.е. длину Мы знаем, что по отрезку СО состав двигается равномерно со скоростью в течение времени секунд, значит отрезок СО, т.е. м м .
Отсюда ясно, что вся длина СН = СО + ОН , т.е. СН м м.
Как было показано выше искомая дистанция – это длина СК, равная разности СН и КН, т.е. СН и .
Итак: СК CH
м м.
ответ : дистанция между составами: м мм .( у меня такое же задание было) мне 5 поставили
В момент броска камень обладает кинетической энергией: Ek=m*Vо^2/2. Долетев до максимально высокой точки траектории, камень полностью теряет кинетическую энергию, которая полностью переходит в потенциальную: Ep=m*g*h. Приравняв эти энергии можно найти высоту подъема камня: m*Vo^2/2=m*g*h. Сократим обе части равенства на m и умножим на 2: Vo^2=2*g*h. Отсюда: h=Vo^2/(2*g). Потенциальная энергия в начальный момент броска равна 0 (нулю). В максимально высокой точке траектории она максимальна:Ep=m*g*h=m*Vo^2/2=2*100/2=100 Дж. В ходе полета вверх и вниз потенциальная энергия изменяется от 0 до 100 Дж пропорционально высоте подъема над поверхностью земли. Работа силы тяжести А=F*s, где F=P-вес тела, t-время полета до высшей точки траектории. S=h. A=m*g*Vo^2/(2*g)=m*Vo^2/2=2*100/2=100 Дж.
Штатная скорость км/ч м/с м/с м/с.
Интервал движения
Время посадки высадки
Время торможения до остановки
Тормозной путь м .
Длина состава м .
Найти: дистанцию между составами в [м] и [мм].
Р е ш е н и е :
Все положения, упоминаемые в доказательстве решения, отмечены на приложенном к решению рисунке.
Искомая дистанция между поездами – это свободное пространство вдоль железнодорожного полотна. Таким образом – дистанция в данном случае – это расстояние от ведущего вагона (начала) заднего Скоростного состава (положение С) до Конца припаркованного состава (положение К) в тот момент, когда припаркованный собирается отправляться.
Нам неизвестно, является ли торможение составов перед остановкой равнозамедленным или нет, и нам это знать и не нужно (!), поскольку нам дано и время, и скорость, и тормозной путь. Всё, что нам нужно – это корректно учесть все слагаемые времени и пути при торможении.
Общий интервал движения составляет и это означает, что каждые секунд, в положении Н оказывается Начало очередного состава. Уже припаркованный состав простоял на станции а это означает, что следующему за ним составу осталось проехать из положения С (начало скоростного состава) до точки Н (начало припаркованного состава) в течение секунд.
Искомая дистанция между составами, как мы уже говорили выше, измеряется не от положения С до положения Н, а от положения С до положения К (конец припаркованного состава). Однако нам будет удобно найти весь остаточный путь СН (между положениями С и Н), а затем вычесть из него длину КН (между положениями К и Н), равную длине состава м.
Из секунд, оставшихся идущему следом составу, первые секунд он будет идти с постоянной скоростью м/с из положения С в положение О, а последующие секунд он будет останавливаться из положения О до положения Н.
Длину отрезка ОН мы и так знаем, это тормозной путь м . Теперь найдём СО, т.е. длину Мы знаем, что по отрезку СО состав двигается равномерно со скоростью в течение времени секунд, значит отрезок СО, т.е. м м .
Отсюда ясно, что вся длина СН = СО + ОН , т.е.
СН м м.
Как было показано выше искомая дистанция – это длина СК, равная разности СН и КН, т.е. СН и .
Итак: СК CH
м м.
ответ : дистанция между составами: м мм .( у меня такое же задание было) мне 5 поставили