Предпочтительнее тот при использовании которого на подъём придётся затратить меньшее время. Пусть l м - длина эскалатора, тогда при использовании первого Антону придётся преодолеть расстояние 3l/4 м со скоростью 3-1=2 м/с. Отсюда время подъёма t1=(3l/4)/2=3l/8 с. При использовании второго Антон сначала пробежит вниз по эскалатору расстояние l/4 м со скоростью 3+1=4 м/с, на что уйдёт время t2=(l/4)/4=l/16 с. Затем Антон пробежит вверх по эскалатору расстояние l с той же скоростью 4 м/с, на что уйдёт время t3=l/4 с. Таким образом, при использовании второго время до подъёма составит t2+t3=l/16+l/4=5l/16 с. Так как 3l/8=6l/16>5l/16, то t1>t2+t3. Значит, предпочтительнее второй
Если они движутся в одном направлении направим ось х по направлению их движения. т.к. первый автомобилист движется равномерно, то его координата будет выражаться как : x=x0+vt т.к. второй движется с постоянный ускорением, то его координата изменяется по закону : x=x0+V0t+at^2/2 совмести х0 с началом координат: х0=0 т.к. они встретились, значит в определенный момент времени их координаты стали равны. т.к. второй вышел на 20 секунд позже, значит первый двигался (t+20)c приравниваем V1*(t+20)=V2*(t)+a*(t)^2/2 10(t+20)=(t)^2 (после подстановки данных из условия) t^2-10t-200=0 (t-20)(t+10)=0 t=20секунд t=-10>0 - no ответ : через 20 сек
т.к. первый автомобилист движется равномерно, то его координата будет выражаться как : x=x0+vt
т.к. второй движется с постоянный ускорением, то его координата изменяется по закону : x=x0+V0t+at^2/2
совмести х0 с началом координат: х0=0
т.к. они встретились, значит в определенный момент времени их координаты стали равны.
т.к. второй вышел на 20 секунд позже, значит первый двигался (t+20)c
приравниваем
V1*(t+20)=V2*(t)+a*(t)^2/2
10(t+20)=(t)^2 (после подстановки данных из условия)
t^2-10t-200=0
(t-20)(t+10)=0
t=20секунд
t=-10>0 - no
ответ : через 20 сек