На короткому плечі важеля підвішено вантаж масою 100 кг. вантаж підняли на висоту 8 см, при цьому точка опори прикладання діючої сили перемістилась на висоту 40 см. знайдіть, яку силу при цьому приклали до довгого плеча, якщо ккд важеля 80 %
Движение на обоих участках было равномерным, поэтому найти время \(t_1\) и \(t_2\) не составит труда.
\[\left\{ \begin{gathered}
{t_1} = \frac{{{S_1}}}{{{\upsilon _1}}} \hfill \\
{t_2} = \frac{{{S_2}}}{{{\upsilon _2}}} \hfill \\
\end{gathered} \right.\]
Так как участки равны по величине \(S_1=S_2=\frac{1}{2}S\), и скорость на первой участке больше скорости на втором в два раза \(\upsilon_1=2\upsilon_2\), то:
1.тело совершает прямолинейное равномерное движение или находится в покое. в качестве примера выполнения 1 закона ньютона можно рассмотреть движение парашютиста. он равномерно приближается к земле, когда действие силы тяжести компенсируется силой натяжения строп парашюта, которая в свою очередь обусловлена сопротивлением воздуха. 1-й закон ньютона-существуют такие системы отсчета, относительно которых тело (материальная точка) при отсутствии на него внешних воздействий (или при их взаимной компенсации) сохраняет состояние покоя или равномерного прямолинейного движения. 2. тело движется равноускоренно. как движется мяч после столкновения с битой. чем больше сила удара, тем с большим ускорением начнет двигаться мяч и, следовательно, тем большую скорость он приобретет за время удара. 2-й закон ньютона-ускорение, приобретаемое телом в инерциальной системе отсчета прямо пропорционально действующей на него силе и обратно пропорциональна его массе. импульс силы равен изменению импульса тела 3. возникает сила. взаимодействие космонавта и спутника (космонавт пытается придвинуть спутник к себе) . они действуют друг на друга с равными по величине, но противоположными по направлению силами. отметим, что ускорения, с которыми космонавт и спутник будут перемещаться в космическом пространстве будут разными из-за разницы в массах этих объектов. 3-й закон ньютона-тела взаимодействуют с силами, равными по модулю и противоположными по направлению.
Среднюю скорость катера можно сосчитать по формуле:
\[{\upsilon _{ср}} = \frac{{{S_1} + {S_2}}}{{{t_1} + {t_2}}}\]
Движение на обоих участках было равномерным, поэтому найти время \(t_1\) и \(t_2\) не составит труда.
\[\left\{ \begin{gathered}
{t_1} = \frac{{{S_1}}}{{{\upsilon _1}}} \hfill \\
{t_2} = \frac{{{S_2}}}{{{\upsilon _2}}} \hfill \\
\end{gathered} \right.\]
Так как участки равны по величине \(S_1=S_2=\frac{1}{2}S\), и скорость на первой участке больше скорости на втором в два раза \(\upsilon_1=2\upsilon_2\), то:
\[\left\{ \begin{gathered}
{t_1} = \frac{S}{{2{\upsilon _1}}} = \frac{S}{{4{\upsilon _2}}} \hfill \\
{t_2} = \frac{S}{{2{\upsilon _2}}} \hfill \\
\end{gathered} \right.\]
Подставим выражения для времен \(t_1\) и \(t_2\) в формулу средней скорости.
\[{\upsilon _{ср}} = \frac{S}{{\frac{S}{{4{\upsilon _2}}} + \frac{S}{{2{\upsilon _2 = \frac{S}{{\frac{{3S}}{{4{\upsilon _2 = \frac{{S \cdot 4{\upsilon _2}}}{{3S}} = \frac{{4{\upsilon _2}}}{3}\]
Значит необходимая нам скорость \(\upsilon_2\) определяется по такой формуле.