На одном из этапов трассы робот должен проехать по транспортёрной ленте до кольца в конце конвейера, захватить кольцо, развернуться и вернуться в начало этапа по той же транспортёрной ленте. Скорость транспортёрной ленты равна 5 см/с, относительно ленты робот движется со скоростью 120 дм/мин. Длина конвейера равна 6 м. Сколько времени в секундах потратит робот на проезд по транспортёрной ленте туда и обратно? Временем на разворот и захват кольца можно пренебречь. В ответ запишите только число.
• по определению кпд: n = q/qзатр, где qзатр - затраченная теплота на нагрев куска меди (будем считать далее, что температура t2 не является температурой плавления меди)
• медь нагревается за счет горения угля. значит:
○ n = q/(q m1)
○ m1 = q/(n q)
• теплота q расходуется на нагрев куска меди: q = c m2 (t2 - t1) (1)
• далее эта же теплота q пойдет на плавление льда (его температура по условию 0 °с, поэтому плавление начнется сразу же): q = λ m3 (2)
• приравняв уравнения (1) и (2), находим:
○ t2 = t1 + ((λ m3)/(c m2))
• подставляем уравнение в выражение (1). получаем:
○ t1 = (q - λ m3)/(m2 - m1)
делениями равно тогда мы можем выразить время, которое тратит жук на прохождение расстояния между
каждой парой делений:
Жук, как мы понимаем, сделал 4 остановки: после 2-ого, 4-ого, 6-ого и 8-ого делений на 1.5 секунды.
Значит полное время, которое он затратил на прохождение линейки равно:
Поскольку нам дана средняя скорость,
то мы можем определить длину L линейки Глюка, как:
Но с другой стороны, длина линейки Глюка, очевидно, равна поскольку мы изначальнго определили
как цену деления линейки Глюка. Стало быть:
см
ответ: 1.5 см.