В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
mockingbird12
mockingbird12
03.07.2020 07:00 •  Физика

На одном конце детской качели сидит ребёнок массой 45 кг качели уравновешен грузом на другом конце длина левого плеча 175 см длина самой качели 310 см Чему равна масса груза​

Показать ответ
Ответ:
hardbrain
hardbrain
27.05.2021 02:26
Аэростат спускается с одинаковой скоростью, значит мы можем привязать к нему систему отсчета и в ней считать.
Это еще потому удобно, что максимальное расстояние между аэростатом и камнем будет при нулевой скорости камня относительно аэростата, относительно земли камень будет снижаться 4м/с.

Используем формулу кинематики: S=(V²-Vo²)/(2a)
Относительно аэростата в нашем случае 
H=Vотн²/(2*g), Vотн - скорость камня относительно аэростата в начальный момент, равна 29м/с, возьмем g=10м/c²

H=29*29/2*10=42(м) - это ответ
0,0(0 оценок)
Ответ:
irina956
irina956
07.05.2023 21:56

осмотрим, как влияет э.д.с. самоиндукции на процесс установления тока в цепи, содержащей индуктивность.

в цепи, представленной на схеме 10.10, течёт ток. отключим источник e, разомкнув в момент времени  t  = 0 ключ  к. ток в катушке начинает убывать, но при этом возникает э.д.с. самоиндукции, поддерживающая убывающий ток.

рис. 10.10.

запишем для новой схемы 10.10.b  уравнение правила напряжений кирхгофа:

.

разделяем переменные и интегрируем:

пропотенцировав последнее уравнение, получим:

.

постоянную интегрирования найдём, воспользовавшись начальным условием: в момент отключения источника  t  = 0, ток в катушке  i(0) =  i0.

отсюда следует, что  c  =  i0  и поэтому закон изменения тока в цепи приобретает вид:

                                                  .                                              (10.7)

график этой зависимости на рис. 10.11. оказывается, ток в цепи, после выключения источника, будет убывать по экспоненциальному закону и станет равным нулю только спустя  t  = ¥.

рис. 10.11.

вы и сами теперь легко покажете, что при  включении  источника (после замыкания ключа  к) ток будет нарастать тоже по экспоненциальному закону, асимптотически приближаясь к значению  i0  (см. рис. 10.

                                                  .                                    (10.8)

но вернёмся к первоначальной размыкания цепи.

мы отключили в цепи источник питания (разомкнули ключ  к), но ток — теперь в цепи 10.8.b  — продолжает течь. где черпается энергия, обеспечивающая бесконечное течение этого убывающего тока?

ток поддерживается электродвижущей силой самоиндукции e =  . за время  dt  убывающий ток совершит работу:

da  = eси×i×dt  = –lidi.

ток будет убывать от начального значения  i0  до нуля. проинтегрировав последнее выражение в этих пределах, получим полную работу убывающего тока:

                                        .                          (10.9)

совершение этой работы сопровождается двумя процессами: исчезновением тока в цепи и исчезновением магнитного поля катушки индуктивности.

с чем же связана была выделившаяся энергия? где она была локализована? располагалась ли она в проводниках и связана ли она с направленным движением носителей заряда? или она локализована в объёме соленоида, в его магнитном поле?

опыт даёт ответ на эти вопросы:   энергия электрического тока связана с его магнитным полем и распределена в пространстве, занятом этим полем.

несколько изменим выражение (10.9), учтя, что для длинного соленоида справедливы следующие утверждения:

          l  = m0n2sl          (10.5) — индуктивность;

          b0  = m0ni0          (9.17) — поле соленоида.

эти выражения используем в (10.9) и получим новое уравнение для полной работы экстратока размыкания, или — начального запаса энергии магнитного поля:

                              .                          (10.10)

здесь  v  =  s×l  — объём соленоида (магнитного

энергия катушки с током пропорциональна квадрату вектора магнитной индукции.

разделив эту энергию на объём магнитного поля, получим среднюю плотность энергии:

  [].                                      (10.11)

это выражение похоже на выражение плотности энергии электростатического поля:

.

обратите внимание: в сходных уравнениях, если e0  — в числителе, m0  — непременно в знаменателе.

зная плотность энергии в каждой точке магнитного поля, мы теперь легко найдём энергию, в любом объёме  v  поля.

локальная плотность энергии в заданной точке поля:

.

значит,  dw  = wdv  и энергия в объёме  v  равна:

.

0,0(0 оценок)
Популярные вопросы: Физика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота