Монета остывает от температуры t до 0 °С (тающий лед) и отдает льду количество теплоты Q = c*m*(t - 0 °C), где с = 0,22 кДж/(кг*°С) m - масса монеты m = ρ * V, где ρ = 9000 кг/м³ V - объем монеты Для плавления льда необходимо количество теплоты Q = λ * mл, где λ = 330 кДж/кг - удельная теплота плавления льда mл - масса расплавленного льда mл = ρл * V, где ρл = 900 кг/м³ - плотность льда Объем расплавленного льда равен объему монеты, см. условие. Это тепло лед получает от нагретой монеты, т. о. c*m*(t - 0 °C) = λ * mл с*ρ * V*t = λ*ρл * V c*ρ*t = λ*ρл t = λ*ρл / (с*ρ) = 330 кДж/кг * 900 кг/м³ / (9000 кг/м³ * 0,22 кДж/(кг*°С)) = 150 °С
Теплоемкость свинца мы вычислим в самой простой модели Дюлонга-Пти. Согласно ей, атомы кристаллической решетки металла участвуют в трех взаимно перпендикулярных колебательных движениях. По теореме о равнораспределении энергии на каждое колебание атома приходится kT джоулей. Поэтому молярная теплоемкость свинца
Удельную же теплоемкость мы найдем, разделив молярную теплоемкость на массу моля свинца (207г)
Значение получилось несколько ниже табличного, видимо, ввиду некорректного пренебрежения электронной теплоемкостью металла. Более точная модель Дебая смогла бы дать более близкий к реальному ответ, но, к сожалению, дебаевские поправки к модели Дюлонга-Пти не вычисляются методами школьной программы (да и вообще предполагают серьезное понимание квантовой физики)
с = 0,22 кДж/(кг*°С)
m - масса монеты
m = ρ * V, где
ρ = 9000 кг/м³
V - объем монеты
Для плавления льда необходимо количество теплоты Q = λ * mл, где
λ = 330 кДж/кг - удельная теплота плавления льда
mл - масса расплавленного льда
mл = ρл * V, где
ρл = 900 кг/м³ - плотность льда
Объем расплавленного льда равен объему монеты, см. условие.
Это тепло лед получает от нагретой монеты, т. о.
c*m*(t - 0 °C) = λ * mл
с*ρ * V*t = λ*ρл * V
c*ρ*t = λ*ρл
t = λ*ρл / (с*ρ) = 330 кДж/кг * 900 кг/м³ / (9000 кг/м³ * 0,22 кДж/(кг*°С)) = 150 °С
Удельную же теплоемкость мы найдем, разделив молярную теплоемкость на массу моля свинца (207г)
Значение получилось несколько ниже табличного, видимо, ввиду некорректного пренебрежения электронной теплоемкостью металла. Более точная модель Дебая смогла бы дать более близкий к реальному ответ, но, к сожалению, дебаевские поправки к модели Дюлонга-Пти не вычисляются методами школьной программы (да и вообще предполагают серьезное понимание квантовой физики)