Тело по параболе (вертикальная координата) движется в соответствии с уравнением y(t)=vo*sin(α)*t*-0,5*9,81*t², где 9,81 - ускорение свободного падения. y(t)=640*t*sin(30)-0,5*9,81*t²=1200⇒1200=640*0,5*t-4,905*t²⇒-4,905*t²+320*t-1200=0, далее решаем квадратное уравнение известным алгоритмом и находим, что t1=3,995 секунды и t2=61,245 секунды. В ответ берём меньшее время (первое от момента броска, второе наступает после пролёта телом точки максимального подъёма). ответ: искомое время составляет 3,995 секунды.
Запишем уравнение теплового баланса
Q1 + Q2 = Q3
где Q1 - количество теплоты поглощенное стальным чайником
Q2 - количество теплоты поглощенное водой
Q3 - количество теплоты отданное бруском
Тогда c1*m1 * (t2-t1) + c2*m2 * (t2-t1) = c3*m3 * (t3-t2)
Удельная теплоемкость стали 0,46 кДж/(кг*К), воды 4,18 кДж/(кг*К)
Тогда
0,46*1,2*(25-20) + 4,18*1,9*(25-20) = с3 * 0,65 (100-25)
Отсюда с3 = 0,87 кДж/(кг*К)
Данной удельная теплоемкость может соответствовать Глина у которой с = 0,88 кДж/(кг*К)