На рисунке показан график зависимости координаты х(м) от времени t(с), описывающий движение мотоциклиста: a) Вычислите скорость мотоциклиста на участке от 0 – 10 с
b) Напишите уравнение координаты для участка от 0 – 10 с
c) Сколько времени мотоциклист ждал зеленого сигнала светофора
Сила трения - это сила, которая окружает нас повсюду. Мы применяем ее, когда встаем с кровати и начинаем идти, когда чистим зубы и умываемся. Сила трения сопровождает нас гораздо чаще, чем мы думаем. Я бы однозначно закричал "караул" т.к по многим причинам. Для людей и меня вчасности стали бы трудны в выполнении очень многие занятия: вождение автомобиля, котание на роликах и даже ходьба! Если бы не сила трения возможно люди бы еще жили в Средневековье, ведь процесс эволюции сильно бы замедлился. Людям было бы намного сложнее охотиться, добыть огонь было бы невозможно, свет не увилел бы протзведения, покорившие мир в сфере литературы, музыки и искусства. Я не могу представить, как бы мы жили, чтобы люди прилумали доя выживания без силы трения. По этому я повторюсь "КАРАУЛ".
1) Для начала мы сделаем рисунок про массивное тело подвешено на невесомой и нерастяжимой нити, чтобы было понятно. (Рисунок сделан внизу).
2) Для начала мы воспользуемся законом сохранения энергий, про этого закона мы найдем максимальную скорость тела:
E(понт.) = E(кин.) - закон сохранения энергий
E(понт.) = mgh - потенциальная энергия
E(кин.) = (m×(υ(max.))²)/2 - кинетическая энергия
Следовательно мы получаем:
mgh = (m×(υ(max.))²)/2 | : m
gh = (υ(max.))²/2 | × 2
2gh = (υ(max.))² ⇒ υ(max.) = √(2gh) - максимальная скорость тела (1)
3) Теперь мы еще в условий сказано что нить с телом отклонили на 60° от вертикали и отпустили - это значит что получится прямоугольный треугольник, потому что нить с телом отклонили на 60° от вертикали и отпустили его вниз. По рисунку мы видим что получился прямоугольный треугольник, но нам надо найти высоту которую тело отпустили, следовательно мы получим:
Пусть гипотенуза нерастяжимой нити - , тогда маленький катет - .
Теперь мы находим высоту, которую указан на рисунке:
- высота которую тело опустили (2)
3) Теперь мы находим общую формулу про максимальную скорость тела пользуясь из (1) и (2), тогда мы получим:
υ(max.) = √(2gh) и h = l/2, следовательно:
υ(max.) = √(2g × (l/2)) = √(g×l) ⇒ υ(max.) = √(g×l) - максимальная скорость тела
Дано:
l = 90 см = 0,9 м
α = 60°
------------------------------
Найти:
υ(max.) - ?
1) Для начала мы сделаем рисунок про массивное тело подвешено на невесомой и нерастяжимой нити, чтобы было понятно. (Рисунок сделан внизу).
2) Для начала мы воспользуемся законом сохранения энергий, про этого закона мы найдем максимальную скорость тела:
E(понт.) = E(кин.) - закон сохранения энергий
E(понт.) = mgh - потенциальная энергия
E(кин.) = (m×(υ(max.))²)/2 - кинетическая энергия
Следовательно мы получаем:
mgh = (m×(υ(max.))²)/2 | : m
gh = (υ(max.))²/2 | × 2
2gh = (υ(max.))² ⇒ υ(max.) = √(2gh) - максимальная скорость тела (1)
3) Теперь мы еще в условий сказано что нить с телом отклонили на 60° от вертикали и отпустили - это значит что получится прямоугольный треугольник, потому что нить с телом отклонили на 60° от вертикали и отпустили его вниз. По рисунку мы видим что получился прямоугольный треугольник, но нам надо найти высоту которую тело отпустили, следовательно мы получим:
Пусть гипотенуза нерастяжимой нити - , тогда маленький катет - .
Теперь мы находим высоту, которую указан на рисунке:
- высота которую тело опустили (2)
3) Теперь мы находим общую формулу про максимальную скорость тела пользуясь из (1) и (2), тогда мы получим:
υ(max.) = √(2gh) и h = l/2, следовательно:
υ(max.) = √(2g × (l/2)) = √(g×l) ⇒ υ(max.) = √(g×l) - максимальная скорость тела
υ(max.) = √(9,8 м/с² × 0,9 м) = √(8,82 м²/с²) ≈ 2,97 м/с
ответ: υ(max.) = 2,97 м/с